Skip to main content
Log in

Synthesis and Photoluminescence of Fluorinated Yttria–Alumina Composites

  • Published:
Inorganic Materials Aims and scope

Abstract—

Composites have been prepared via thermal decomposition of gel-like mixtures containing yttrium, aluminum, and europium(III) salts and ethyl acetate as a basic component. Luminescence of the composites is due to Eu3+ 5D0,17Fj electronic transitions. The luminescence is excited in intrinsic absorption bands of the Eu3+ ions and as a result of resonance vibrational energy transfer from the host to their excited state levels and transitions of O2– 2p electrons to the europium 4f orbital. The luminescence and luminescence excitation spectra demonstrate changes in the peak position of individual bands, redistribution of their intensity, and changes in their Stark structure. The observed changes are related to the different fractions of fluorine atoms in the composition of activator centers, their concentration, and the Y3+ : Al3+ atomic ratio in the synthesis products, obtained at a temperature of 800°C and synthesis times from 4 to 12 h and differing in phase composition and structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Maciel Glauco, S., Rakov, N., Zanon, R.A., et al., Red photoluminescence in NdAlO3 crystalline ceramic powders prepared by combustion synthesis, Chem. Phys. Lett., 2008, vol. 465, pp. 258–260.https://doi.org/10.1016/j.cplett.2008.09.062

    Article  CAS  Google Scholar 

  2. Pavasaryte, L., Katelnikovas, A., Momot, A., et al., Eu3+-doped Ln3Al5O12 (Ln = Er, Tm, Yb, Lu) garnets: synthesis, characterization and investigation of structural and luminescence properties, J. Lumin., 2019, vol. 212, pp. 14–22.https://doi.org/10.1016/j.jlumin.2019.04.005

    Article  CAS  Google Scholar 

  3. Jiang, N., Zhao, Y., Ge, L., et al., Fabrication and kW-level MOPA laser output of planar waveguide YAG/Yb:YAG/YAG ceramic slab, J. Am. Ceram. Soc., 2019, vol. 102, no. 4, pp. 1758–1767.https://doi.org/10.1111/jace.16040

    Article  CAS  Google Scholar 

  4. Jusza, A., Piramidowicz, R., Lipińska, L., et al., Short wavelength emission properties of Tm3+ and Tm3+ + Yb3+ doped LaAlO3 nanocrystals and polymer composites, Opt. Mater., 2019, vol. 97, paper 109365.https://doi.org/10.1016/j.optmat.2019.109365

  5. Yin, D., Wang, J., Tang, D., et al., Fabrication and microstructural characterizations of lasing grade Nd:Y2O3 ceramics, J. Am. Ceram. Soc., 2019, vol. 102, no. 12, pp. 7462–7468.https://doi.org/10.1111/jace.16671

    Article  CAS  Google Scholar 

  6. Boyarintseva, Y., Neicheva, S., Zhmurin, P., et al., Optical study of Y3 – xGdxAl5O12:Ce crystals grown from the melt, Opt. Mater., 2019, vol. 96, paper 109283.https://doi.org/10.1016/j.optmat.2019.109283

  7. Panahibakhsh, S., Bahramian, R., Jaberi, M., and Jelvani, S., Control of defects and their luminescence properties in Nd:YAG crystals by laser irradiation, J. Lumin., 2020, vol. 218, paper 116813.https://doi.org/10.1016/j.jlumin.2019.116813

  8. Chaika, M., Tomala, R., Strek, W., et al., Upconversion luminescence in Cr3+:YAG single crystal under infrared excitation, J. Lumin., 2020, vol. 226, paper 117467.https://doi.org/10.1016/j.jlumin.2020.117467

  9. Zhang, Z., Goldner, P., Ferrier, A., et al., Tailoring the 3 F 4 level lifetime in Tm3+:Y3Al5O12 by Eu3+ co-doping for signal processing application, J. Lumin., 2020, vol. 222, paper 117107.https://doi.org/10.1016/j.jlumin.2020.117107

  10. Ivanov, M.G., Kopylov, Yu.L., Kravchenko, V.B., et al., YAG and Y2O3 laser ceramics from nonagglomerated nanopowders, Inorg. Mater., 2014, vol. 50, no. 9, pp. 951–959.https://doi.org/10.1134/S0020168514090040

    Article  CAS  Google Scholar 

  11. Feng, Y., Toci, G., Pirri, A., et al., Fabrication, microstructure, and optical properties of Yb:Y3ScAl4O12 transparent ceramics with different doping levels, J. Am. Ceram. Soc., 2020, vol. 103, no. 1, pp. 224–234.https://doi.org/10.1111/jace.16691

    Article  CAS  Google Scholar 

  12. Ukleina, I.Yu., Cand. Sci. (Chem.) Dissertation, Stavropol: Stavropol. Gos. Univ., 2005.

  13. Rakov, N. and Maciel, G.S., Comparative study of Er3+ and Tm3+ co-doped YOF and Y2O3 powders as red spectrally pure up-converters, Opt. Mater., 2013, no. 35, pp. 2372–2375.https://doi.org/10.1016/j.optmat.2013.06.037

  14. Tian, Y., Chen, B., Hua, R., et al., Fabrication and luminescent enhancement of Eu3+-doped Y2O3@YOF core–shell nanocrystals, J. Nanosci. Nanotechnol., 2011, vol. 11, no. 11, pp. 9631–9635.https://doi.org/10.1166/jnn.2011.5312

    Article  CAS  PubMed  Google Scholar 

  15. Kuznetsov, S.V., Osiko, V.V., Tkachenko, E.A., and Fedorov, P.P., Inorganic nanofluorides and related nanocomposites, Russ. Chem. Rev., 2006, vol. 75, no. 12, pp. 1056–1082.https://doi.org/10.1070/RC2006v075n12ABEH003637

    Article  CAS  Google Scholar 

  16. Kolomiets, T.Yu., Tel’nova, G.B., Ashmarin, A.A., et al., Synthesis and sintering of submicron Nd:YAG particles prepared from carbonate precursors, Inorg. Mater., 2017, vol. 53, no. 8, pp. 874–882.https://doi.org/10.1134/S0020168517080076

    Article  CAS  Google Scholar 

  17. Garskaite, E., Lindgren, M., Einarsrud, M.-A., and Grande, T., Luminescent properties of rare earth (Er, Yb) doped yttrium aluminium garnet thin films and bulk samples synthesized by an aqueous sol–gel technique, J. Eur. Ceram. Soc., 2010, vol. 30, no. 7, pp. 1707–1715.https://doi.org/10.1016/j.jeurceramsoc.2010.01.001

    Article  CAS  Google Scholar 

  18. Mamonova, D.V., Kolesnikov, I.E., Manshina, A.A., et al., Modified Pechini method for the synthesis of weakly-agglomerated nanocrystalline yttrium aluminum garnet (YAG) powders, Mater. Chem. Phys., 2017, vol. 189, pp. 245–251.https://doi.org/10.1016/j.matchemphys.2016.12.025

    Article  CAS  Google Scholar 

  19. Zhang, J., Zhang, Z., Tang, Z., et al., Luminescent properties of Y2O3:Eu synthesized by sol–gel processing, J. Mater. Process. Technol., 2002, vol. 121, nos. 2–3, pp. 265–268.https://doi.org/10.1016/S0924-0136(01)01263-8

    Article  CAS  Google Scholar 

  20. Chong, M.K., Pita, K., and Kam, C.H., Photoluminescence of Y2O3:Eu3+ thin film phosphors by sol–gel deposition and rapid thermal annealing, J. Phys. Chem. Solids, 2005, vol. 66, no. 1, pp. 213–217.https://doi.org/10.1016/j.jpcs.2004.09.016

    Article  CAS  Google Scholar 

  21. Cho, J.Y., Ko, K.Y., and Do, Y.R., Optical properties of sol–gel derived Y2O3:Eu3+ thin-film phosphors for display applications, Thin Solid Films, 2007, vol. 515, nos. 7–8, pp. 3373–3379.https://doi.org/10.1016/j.tsf.2006.09.029

    Article  CAS  Google Scholar 

  22. Back, M., Massari, A., Boffelli, M., et al., Optical investigation of Tb3+-doped Y2O3 nanocrystals prepared by Pechini-type sol–gel process, J. Nanopart. Res., 2012, vol. 14, paper 792.https://doi.org/10.1007/s11051-012-0792-x

  23. Wen, T., Luo, W., Wang, Y., et al., Multicolour and up-conversion fluorescence of lanthanide doped Vernier phase yttrium oxyfluoride nanocrystals, J. Mater. Chem. C, 2013, vol. 1, no. 10, pp. 1995–2001.https://doi.org/10.1039/c3tc00642e

    Article  CAS  Google Scholar 

  24. Pomelova, T.A., Bakovets, V.V., Korol’kov, I.V., et al., On the abnormal efficiency of the luminescence of submicron-sized phosphor Y2O3:Eu3+, Phys. Solid State, 2014, vol. 56, no. 12, pp. 2496–2506.https://doi.org/10.1134/S1063783414120269

    Article  CAS  Google Scholar 

  25. Rakov, N., Guimarãaes, R.B., Lozano, W., and Maciel, G.S., Structural and spectroscopic analyses of europium doped yttrium oxyfluoride powders prepared by combustion synthesis, J. Appl. Phys., 2013, vol. 114, paper 043517.https://doi.org/10.1063/1.4816623

  26. Smagin, V.P. and Khudyakov, A.P., Effect of synthesis conditions on the luminescence of europium-containing materials based on yttria and yttrium oxyfluorides, Inorg. Mater., 2019, vol. 55, no. 1, pp. 64–76.https://doi.org/10.1134/S002016851901014X

    Article  CAS  Google Scholar 

  27. Smagin, V.P. and Khudyakov, A.P., Photoluminescence of europium-containing materials based on fluorinated yttria and alumina, Inorg. Mater., 2020, vol. 56, no. 10, pp. 1039–1049.https://doi.org/10.1134/S0020168520100143

    Article  CAS  Google Scholar 

  28. Khudyakov, A.P., Smagin, V.P., Strucheva, N.E., and Zatonskaya, L.V., Nonaqueous synthesis and luminescence of (YF3 – Y2O3):Eu3+ composites, Polzunovsk. Vestn., 2019, no. 2, pp. 106–112.https://doi.org/10.25712/ASTU.2072-8921.2019.02.021

  29. Smagin, V.P. and Mokrousov, G.M., Fiziko-khimicheskie aspekty formirovaniya i svoistva opticheski prozrachnykh metallsoderzhashchikh polimernykh materialov (Physicochemical Aspects of Formation and Properties of Optically Transparent Metal-Containing Polymer Materials), Barnaul: Altaisk. Univ, 2014. http://elibrary.asu.ru/xmlui/bitstream/handle/asu/840/read.7book?sequence=1

  30. Manashirov, O.Ya., Zvereva, E.M., and Vorob’ev, V.A., A comparative study of various classes of Yb3+-activated phosphors under IR excitation, Vestn. Yuzhnogo Nauchn. Tsentra Ross. Akad. Nauk, 2012, vol. 8, no. 4, pp. 38–49.

    Google Scholar 

  31. Ćirć, A. and Stojadinović, S., Structural and photoluminescence properties of Y2O3 and Y2O3:Ln3+ (Ln = Eu, Er, Ho) films synthesized by plasma electrolytic oxidation of yttrium substrate, J. Lumin., 2020, vol. 217, paper 116762.https://doi.org/10.1016/j.jlumin.2019.116762

  32. Alarćon-Flores, G., García-Hipólito, M., Aguilar-Frutis, M., et al., Synthesis and fabrication of Y2O3:Tb3+ and Y2O3:Eu3+ thin films for electroluminescent applications: optical and structural characteristics, Mater. Chem. Phys., 2015, vols. 149–150, pp. 34–42.https://doi.org/10.1016/j.matchemphys.2014.09.020

    Article  CAS  Google Scholar 

  33. Smagin, V.P., Khudyakov, A.P., and Biryukov, A.A., Luminescence of Eu3+ ions in a matrix of a fluorinated yttrium–aluminum composition, Phys. Solid State, 2020, vol. 62, no. 2, pp. 325–331.https://doi.org/10.1134/S1063783420020195

Download references

ACKNOWLEDGMENTS

This work was carried out using scientific equipment at the Interregional Shared Research Facilities Center, National Research Tomsk State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Smagin.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smagin, V.P., Khudyakov, A.P. & Biryukov, A.A. Synthesis and Photoluminescence of Fluorinated Yttria–Alumina Composites. Inorg Mater 57, 1052–1060 (2021). https://doi.org/10.1134/S0020168521100150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521100150

Keywords:

Navigation