Skip to main content
Log in

Effect of Synthesis Conditions on the Luminescence of Europium-Containing Materials Based on Yttria and Yttrium Oxyfluorides

  • Published:
Inorganic Materials Aims and scope

Abstract

We have studied the luminescence of europium(III)-doped materials based on yttria and yttrium oxyfluorides. The materials were prepared through heat treatment of fluorine-containing yttrium and europium(III) thioacetamide complexes at temperatures of 400, 600, and 800°C for 2 to 6 h. The products were shown to consist of (EuхY1 –х)F3, (EuхY1 –х)5O4F7, (EuхY1 –х)OF, and (EuхY1 –х)2O3 phases. We have proposed a scheme that reflects the formation sequence of the main components of the materials in the above temperature range. Narrow-band luminescence of the materials has been shown to arise from Eu3+5D07Fj electronic transitions. The origin of the observed broad luminescence band peaking in the range 480–500 nm can be understood in terms of surface structural defects, the particle size, and the broad particle size distribution. The luminescence spectrum has been shown to be influenced by the starting-mixture composition, synthesis conditions, host composition, and excitation wavelength. Some of the observed luminescence features have been shown to be due to the effect of S2– ions in the composition of europium-containing activator centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Ikesue, A., Kinoshita, T., Kamata, K., and Yoshida, K., Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers, J. Am. Ceram. Soc., 1995, vol. 78, no. 4, pp. 1033–1040.

    Article  CAS  Google Scholar 

  2. Ikcsuc, A., Aung, Y.L., Kamimura, T., Yoshida, K., and Messing, G.L., Progress in ceramic lasers, Annu. Rev. Mater. Res., 2006, vol. 36, pp. 397–429.

    Article  CAS  Google Scholar 

  3. Siglovaya, N.V., Luminescence properties and fabrication of Y2O3-based red cathodoluminescent phosphors for display and projection CRTs, Cand. Sci. (Chem.) Dissertation, Stavropol: Stavropol State Univ., 2003.

  4. Mikhailov, M.D., Semencha, A.V., Kolesnikov, I.E., and Man’shina, A.A., Synthesis and structure of Y2O3:Eu oxide nanoparticles, Sovrem. Probl. Nauki Obraz., 2012, no. 2, pp. 10–18.

  5. Chong, M.K., Pita, K., and Kam, C.H., Photoluminescence of Y2O3:Eu3+ thin film phosphors by sol–gel deposition and rapid thermal annealing, J. Phys. Chem. Solids, 2005, vol. 66, no. 1, pp. 213–217.

    Article  CAS  Google Scholar 

  6. Cho, J.Y., Ko, K.Y., and Do, Y.R., Optical properties of sol–gel derived Y2O3:Eu3+ thin-film phosphors for display, Thin Solid Films, 2007, vol. 515, nos. 7–8, pp. 3373–3379.

    Article  CAS  Google Scholar 

  7. Anh, T.K., Benalloul, P., Barthou, C., et al., Luminescence, energy transfer, and upconversion mechanisms of Y2O3 nanomaterials doped with Eu3+, Tb3+, Tm3+, Er3+, and Yb3+ ions, J. Nanomater., 2007, vol. 2007, article ID 48 247, pp. 1–10.

  8. Carrillo Romo, F., García Murillo, A., García Hernández, M., et al., Structural and luminescence characterization of silica coated Y2O3:Eu3+ nanopowders, Opt. Mater., 2010, vol. 32, no. 11, pp. 1471–1479.

    Article  CAS  Google Scholar 

  9. Gowd, G.S., Patra, M.K., Songara, S., et al., Effect of doping concentration and annealing temperature on luminescence properties of Y2O3:Eu3+ nanophosphor prepared by colloidal precipitation method, J. Lumin., 2012, vol. 132, no. 8, pp. 2023–2029.

    Article  CAS  Google Scholar 

  10. Ray, S., Manjón, F.J., Mollar, M.A., et al., Broadband, site selective and time resolved photoluminescence spectroscopic studies of finely size-modulated Y2O3:Eu3+ phosphors synthesized by a complex based precursor solution method, Curr. Appl. Phys., 2014, vol. 14, no. 1, pp. 72–81.

    Article  Google Scholar 

  11. Gruzintsev, A.N., Anti-Stokes luminescence of Y2O3:Er, Inorg. Mater., 2014, vol. 50, no. 1, pp. 58–62.

    Article  CAS  Google Scholar 

  12. Ukleina, I.Yu., Yttrium and lanthanide oxyfluorides: synthesis, luminescence, and optical properties, Cand. Sci. (Chem.) Dissertation, Stavropol: Stavropol State Univ., 2005.

  13. Rakov, N., Guimaraes, R.B., Lozano, W.B., and Maciel, G.S., Structural and spectroscopic analyses of europium doped yttrium oxyfluoride powders prepared by combustion synthesis, J. Appl. Phys., 2013, vol. 114, no. 4, paper 043 517, pp. 1–7.

  14. Wen, T., Luo, W., Wang, Y., et al., Multicolour and upconversion fluorescence of lanthanide doped Vernier phase yttrium oxyfluoride nanocrystals, J. Mater. Chem. C, 2013, no. 1, pp. 1995–2001.

  15. Rakov, N. and Maciel, G.S., Comparative study of Er3+ and Tm3+ co-doped YOF and Y2O3 powders as red spectrally pure upconverters, Opt. Mater., 2013, no. 35, pp. 2372–2375.

  16. Nanomaterials: Synthesis, Properties and Applications, Edelstein, A.S. and Cammarata, R.C., Eds., London: Taylor & Francis, 1998.

    Google Scholar 

  17. Nalwa, H.S., Nanostructed Materials and Nanotechnology, San Diego: Academic, 2009.

    Google Scholar 

  18. Pomelova, T.A., Bakovets, V.V., Korol’kov, I.V., et al., On the abnormal efficiency of the luminescence of submicron-sized phosphor Y2O3:Eu3+, Phys. Solid State, 2014, vol. 56, no. 12, pp. 2496–2506.

    Article  CAS  Google Scholar 

  19. Kottaisamy, M., Jeyakumar, D., Jagannathan, R., and Rao, M.M., Yttrium oxide:Eu3+ red phosphor by self-propagating high temperature synthesis, Mater. Res. Bull., 1996, vol. 31, no. 8, pp. 1013–1020.

    Article  CAS  Google Scholar 

  20. Konrad, A., Fries, T., Gahn, A., et al., Chemical vapor synthesis and luminescence properties of nanocrystalline cubic Y2O3:Eu, J. Appl. Phys., 1999, vol. 86, no. 6, pp. 3129–3133.

    Article  CAS  Google Scholar 

  21. Capobianco, J.A., Vetron, F., D’Alesio, T., et al., Optical spectroscopy of nanocrystalline cubic Y2O3:Eu3+ obtained via combustion synthesis, Phys. Chem. Chem. Phys., 2000, vol. 2, pp. 3203–3207.

    Article  CAS  Google Scholar 

  22. Lu, J., Song, J., Prabhu, M., et al., High-power Nd:Y3Al5O12 ceramic laser, Jpn. J. Appl. Phys., 2000, vol. 39, no. 10B, pp. 1048–1050.

    Article  Google Scholar 

  23. Hong, G.Y., Jeon, B.S., Yoo, Y.K., and Yoo, J.S., Photoluminescence characteristics of spherical Y2O3:Eu phosphors by aerosol pyrolysis, J. Electrochem. Soc., 2001, vol. 148, no. 11, pp. H161–H166.

    Article  CAS  Google Scholar 

  24. Zhang, J., Zhang, Z., Tang, Z., et al., Luminescent properties of Y2O3:Eu synthesized by sol–gel processing, J. Mater. Process. Technol., 2002, vol. 121, nos. 2–3, pp. 265–268.

    Article  CAS  Google Scholar 

  25. Chavan, S.V., Combustion synthesis of nanocrystalline yttria: tailoring of powder properties, Mater. Sci. Eng., B, 2006, vol. 132, pp. 266–271.

    Article  CAS  Google Scholar 

  26. Jun Yeol Cho, Ki-Young Ko, and Young Rag Do, Optical properties of sol–gel derived Y2O3:Eu3+ thin-film phosphors for display, Thin Solid Films, 2007, vol. 515, nos. 7–8, pp. 3373–3379.

  27. Mangalaraja, R.V., Combustion synthesis of Y2O3 and Yb–Y2O3: Part I. Nanopowders and their characterization, J. Mater. Process. Technol., 2008, vol. 208, pp. 415–422.

    Article  CAS  Google Scholar 

  28. Garskaite, E., Lindgren, M., Einarsrud, M.-A., and Grande, T., Luminescent properties of rare earth (Er, Yb) doped yttrium aluminium garnet thin films and bulk samples synthesised by an aqueous sol–gel technique, J. Eur. Ceram. Soc., 2010, vol. 30, no. 7, pp. 1707–1715.

    Article  CAS  Google Scholar 

  29. Belyakov, A.V., Lemeshev, D.O., Lukin, E.S., et al., Optically transparent ceramics based on yttrium oxide using carbonate and alkoxy precursors, Glass Ceram., 2006, vol. 63, nos. 7–8, pp. 262–264.

    Article  CAS  Google Scholar 

  30. Gruzintsev, A.N., Ermolaeva, Yu.V., Matveevskaya, N.A., et al., Size-dependent luminescence of spherical Y2O3:Er nanoparticles, Inorg. Mater., 2014, vol. 50, no. 11, pp. 1099–1103.

    Article  CAS  Google Scholar 

  31. Ivanov, M.G., Kopylov, Yu.L., Kravchenko, V.B., et al., YAG and Y2O3 laser ceramics from nonagglomerated nanopowders, Inorg. Mater., 2014, vol. 50, no. 9, pp. 951–959.

    Article  CAS  Google Scholar 

  32. Bagaev, S.N., Osipov, V.V., Ivanov, M.G., et al., Neodymium-doped yttria laser ceramics, Kvantovaya Elektron. (Moscow), 2008, vol. 38, no. 9, pp. 840–844.

    Article  CAS  Google Scholar 

  33. Xu, Y.-N., Ching, W.Y., and Gu, Z.-Q., Electronic, structural and optical properties of crystalline yttria, Phys. Rev. B: Condens. Matter Mater. Phys., 1997, vol. 56, no. 23, pp. 14 993–15 000.

  34. Gotovtseva, E.Y., Biryukov, A.A., and Svetlichnyi, V.A., Stability and luminescence spectra of CdS and ZnS nanoparticle dispersions synthesized in various solvents, Izv. Vyssh. Uchebn. Zaved., Fiz., 2013, vol. 56, no. 3, pp. 32–37.

    Google Scholar 

  35. Smagin, V.P., Davydov, D.A., Unzhakova, N.M., and Biryukov, A.A., Synthesis and spectral properties of colloidal solutions of metal sulfides, Russ. J. Inorg. Chem., 2015, vol. 60, no. 12, pp. 1588–1593.

    Article  CAS  Google Scholar 

  36. Smagin, V.P., Eremina, N.S., and Michueva, Z.V., Synthesis and luminescence spectra of (Y2O3–YOF):Ln(III) composites, Inorg. Mater., 2017, vol. 53, no. 8, pp. 838–846.

    Article  CAS  Google Scholar 

  37. Smagin, V.P. and Mokrousov, G.M., Fiziko-khimicheskie aspekty formirovaniya i svoistva opticheski prozrachnykh metallsoderzhashchikh polimernykh materialov (Physicochemical Aspects of Formation and Properties of Optically Transparent Metal-Containing Polymer Materials), Barnaul: Altaisk. Univ, 2014. http://elibrary. asu.ru/xmlui/bitstream/handle/asu/840/read.7book?sequence=1.

  38. Kolesnikov, I.E., Luminescence properties of europium-doped nanocrystalline oxide powders, Cand. Sci. (Phys.–Math.) Dissertation, St. Petersburg: St. Petersburg State Univ., 2015.

  39. Spirina, A.V., Luminescence of neodymium-doped yttrium aluminum garnet and yttria, Extended Abstract of Cand. Sci. (Phys.–Math.) Dissertation, Yekaterinburg: Inst. of Electrophysics, Ural. Branch, Russ. Acad. Sci., 2011.

  40. Krsmanović, R.M., Antić, Z., Nikolić, M.G., et al., Preparation of Y2O3:Eu3+ nanopowders via polymer complex solution method and luminescence properties of the sintered ceramics, Ceram. Int., 2011, vol. 37, no. 2, pp. 525–531.

    Article  CAS  Google Scholar 

  41. Wang, W.-N., Widiyastuti, W., Ogi, T., et al., Correlations between crystallite/particle size and photoluminescence properties of submicrometer phosphors, Chem. Mater., 2007, vol. 19, no. 7, pp. 1723–1730.

    Article  CAS  Google Scholar 

  42. Srinivasan, R., Yogamalar, N.R., Elanchezhiyan, J., et al., Structural and optical properties of europium doped yttrium oxide nanoparticles for phosphor applications, J. Alloys. Compd., 2010, vol. 496, nos. 1–2, pp. 472–477.

    Article  CAS  Google Scholar 

  43. Antic, B., Rogan, J., Kremenovic, A., et al., Optimization of photoluminescence of Y2O3:Eu and Gd2O3:Eu phosphors synthesized by thermolysis of 2,4-pentanedione complexes, Nanotechnology, 2010, vol. 21, no. 24, paper 245 702.

  44. Fieser, L.F. and Fieser, M., Reagents for Organic Synthesis, New York: Wiley, 1987, vol. 7.

    Google Scholar 

  45. Alekseeva, L.V., Photochemical preparation and properties of colloids based on transition metal complexes, Extended Abstract of Cand. Sci. (Chem.) Dissertation, St. Petersburg: Gertsen State \Pedagogical Univ., 1994.

  46. Tulenin, S.S., Hydrochemical growth of In2S3 and In2Se3 films and related chalcopyrite structures, Cand. Sci. (Chem.) Dissertation, Yekaterinburg: Yeltsin Federal Univ., 2015.

  47. Belobeletskaya, M.V., Steblevskaya, N.I., and Medkov, M.A., Red and green phosphors based on rare-earth oxides, oxysulfides, and phosphates, Vestn. Dal’nevostochnogo Otd. Ross. Akad. Nauk, 2013, no. 5 (171), pp. 33–38.

  48. Dorenbos, P., Systematic behaviour in trivalent lanthanide charge transfer energies, J. Phys.: Condens. Matter, 2003, vol. 15, no. 49, pp. 8417–8434.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to N.S. Eremina (Tomsk State University, Tomsk) and S.A. Kuznetsova (Tomsk State University, Tomsk) for their assistance with this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Smagin.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smagin, V.P., Khudyakov, A.P. Effect of Synthesis Conditions on the Luminescence of Europium-Containing Materials Based on Yttria and Yttrium Oxyfluorides. Inorg Mater 55, 64–76 (2019). https://doi.org/10.1134/S002016851901014X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016851901014X

Keywords:

Navigation