Skip to main content
Log in

Synthesis and ionic conductivity of Li4Ti5O12

  • Published:
Inorganic Materials Aims and scope

Abstract

Lithium titanate, Li4Ti5O12, has been synthesized by the Pechini process, citrate route, and EDTA-citrate route at various final annealing temperatures. The materials obtained have been characterized by scanning electron microscopy, X-ray diffraction, impedance spectroscopy, and thermogravimetry in combination with mass spectrometry of gaseous products. The samples prepared by the Pechini process and annealed at 1073 K had the lowest ionic conductivity. The highest ionic conductivity was offered by the materials prepared at 673 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Skundin, A.M., Efimov, O.N., and Yarmolenko, O.V., Lithium ion batteries: developments and prospects, Usp. Khim., 2002, vol. 71, pp. 378–398.

    Article  Google Scholar 

  2. Reddy, M.V., Subba Rao, G.V., and Chowdari, B.V.R., Metal oxides and oxysalts as anode materials for Li ion batteries, Chem. Rev., 2013, vol. 113, p. 5364.

    Article  CAS  Google Scholar 

  3. Ohzuku, T., Ueda, A., and Yamamota, N., Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells, J. Electrochem. Soc., 1995, vol. 142, pp. A1431–A1435.

    Article  Google Scholar 

  4. Schamer, S., Weppner, W., and Schmid-Beurmann, P., Evidence of two-phase formation upon lithium insertion into the Li1.33Ti1.67O4 spinel, J. Electrochem. Soc., 1999, vol. 146, pp. 857–861.

    Article  Google Scholar 

  5. Chen, C.H., Vaughey, J.T., Jansen, A.N., Dees, D.W., Kahaian, A.J., Goacher, T., and Thackeray, M.M., Studies of Mg-substituted Li4 − x MgxTi5O12 spinel electrodes (0 ≤ x ≤ 1) for lithium batteries, J. Electrochem. Soc., 2001, vol. 148, pp. A102–A104

    Article  CAS  Google Scholar 

  6. Wilkening, M., Amade, R., Iwaniak, W., and Heitjans, P., Ultraslow Li diffusion in spinel-type structured Li4Ti5O12. A comparison of results from solid state NMR and impedance spectroscopy, Phys. Chem. Chem. Phys., 2007, vol. 9, pp. 1239–1246.

    Article  CAS  Google Scholar 

  7. Yi, T.-F., Shu, J., Zhu, Y.-R., Zhu, X.-D., Yue, C.-B., Zhou An-Na, and Rong-Sun, High-performance Li4Ti5 − x VxO12 (0 ≤ x ≤ 0.3) as an anode material for secondary lithium-ion battery, Electrochim. Acta, 2009, vol. 54, pp. 7464–7470

    Article  CAS  Google Scholar 

  8. Lin, Zh.-Yu, Hsu Chao-Chia, Ho Hsin-Ping, and Wu She-Huang, Sol-gel synthesis of aluminum doped lithium titanate anode material for lithium ion batteries, Electrochim. Acta, 2013, vol. 87, pp. 126–132.

    Article  CAS  Google Scholar 

  9. Sun, Y.-K., Jung, D.-J., Lee, Y.S., and Nahm, K.S., Synthesis and electrochemical characterization of spinel Li[Li(1 − x)/3CrxTi(5 − 2x)/3]O4 anode materials, J. Power Sources, 2004. vol. 125, no. 2, pp. 242–245.

    Article  CAS  Google Scholar 

  10. Kubiak, P., Garcia, A., and Womes, M., Phase transition in the spinel Li4Ti5O12 induced by lithium insertion influence of the substitutions Ti/V, Ti/Mn, Ti/Fe, J. Power Sources, 2003, vols. 119–121, pp. 626–630.

    Article  Google Scholar 

  11. Li, X., Qu, M., Huai, Y., and Yu, Z., Preparation and electrochemical performance of Li4Ti5O12/carbon/carbon nano-tubes for lithium ion battery, Electrochim. Acta, 2010, vol. 55, pp. 2978–2982.

    Article  CAS  Google Scholar 

  12. Wang, G.J., Gao, J., Fu, L.J., Zhao, N.H., Wu, Y.P., and Takamura, T., Preparation and characteristic of carbon-coated Li4Ti5O12 anode material, J. Power Sources, 2007, vol. 174, pp. 1109–1112.

    Article  CAS  Google Scholar 

  13. Wen, Z., Yang, X., and Huang, S., Composite anode materials for Li-ion batteries, J. Power Sources, 2007, vol. 174, pp. 1041–1045.

    Article  CAS  Google Scholar 

  14. Borghols, W.J.H., Wagemaker, M., Lafont, U., Kelder, E.M., and Mulder, F.M., Size effects in the Li4 + x Ti5O12 spinel, J. Am. Chem. Soc., 2009, vol. 131, pp. 17 786–17 792.

    Article  CAS  Google Scholar 

  15. Hao, Y., Lai, Q., Xu, Z., Liu, X., and Ji, X., Synthesis by TEA sol-gel method and electrochemical properties of Li4 + x Ti5O12 anode material for lithium-ion battery, Solid State Ionics, 2005, vol. 176, pp. 1201–1206.

    Article  CAS  Google Scholar 

  16. Pechini, M.P., US Patent 3 330 697, 1967.

  17. Gu, H., Ran, R., Zhou, W., and Shao, Z., Anode-supported ScSZ-electrolyte SOFC with whole cell materials from combined EDTA-citrate complexing synthesis process, J. Power Sources, 2007, vol. 172, pp. 704–712.

    Article  CAS  Google Scholar 

  18. Yaroslavtsev, A.B., Khimiya Tverdogo Tela (Solid-State Chemistry), Moscow: Nauchnyi Mir, 2009.

    Google Scholar 

  19. Yaroslavtsev, A.B., Ion-conducting composite materials: from inorganic composites to hybrid membranes, Usp. Khim., 2009, vol. 78, pp. 1094–1112.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Stenina.

Additional information

Original Russian Text © I.A. Stenina, A.B. Il’in, A.B. Yaroslavtsev, 2015, published in Neorganicheskie Materialy, 2015, Vol. 51, No. 1, pp. 69–75.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stenina, I.A., Il’in, A.B. & Yaroslavtsev, A.B. Synthesis and ionic conductivity of Li4Ti5O12 . Inorg Mater 51, 62–67 (2015). https://doi.org/10.1134/S0020168515010185

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168515010185

Keywords

Navigation