Skip to main content
Log in

Effect of particle size on the conductive and electrochemical properties of Li2ZnTi3O8

  • Published:
Inorganic Materials Aims and scope

Abstract

We have studied the effect of final annealing temperature on the formation of lithium zinc titanate, its electrical conductivity, and its electrochemical performance. Li2ZnTi3O8 has been shown to form in a wide range of annealing temperatures, from 673 to 1073 K. Its particle size increases systematically with increasing annealing temperature, whereas its conductivity decreases. The highest electrochemical capacity at low currents is offered by the materials annealed at 773 and 873 K, and the highest cycling stability is offered by the material prepared at 873 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reddy, M.V., Subba Rao, G.V., and Chowdari, B.V.R., Metal oxides and oxysalts as anode materials for Li ion batteries, Chem. Rev., 2013, vol. 113, pp. 5364–5457.

    Article  CAS  Google Scholar 

  2. Zhu, G.N., Wang, Y.G., and Xia, Y.Y., Ti-based compounds as anode materials for Li-ion batteries, Energy Environ. Sci., 2012, vol. 5, pp. 6652–6667.

    Article  CAS  Google Scholar 

  3. Yaroslavtsev, A.B., Kulova, T.L., and Skundin, A.M., Electrode nanomaterials for lithium ion batteries, Usp. Khim., 2015, vol. 84, no. 8, pp. 826–852.

    Article  CAS  Google Scholar 

  4. Sandhya, C.P., Bibin, J., and Gouri, C., Lithium titanate as anode material for lithium-ion cells: a review, Ionics, 2014, vol. 20, pp. 601–620.

    Article  CAS  Google Scholar 

  5. Hernandez, V.S., Torres Martinez, L.M., Mather, G.C., and West, A.R., Stoichiometry, structures and polymorphism of spinel-like phases Li1.33x Zn2–2x Ti1 + 0.67xO4, J. Mater. Chem., 1996, vol. 6, pp. 1533–1536.

    Article  CAS  Google Scholar 

  6. Tang, H.Q., Tang, Z.Y., Du, C.Q., Qie, F.C., and Zhu, J.T., Ag-doped Li2ZnTi3O8 as a high rate anode material for rechargeable lithium-ion batteries, Electrochim. Acta, 2014, vol. 120, pp. 187–192.

    Article  CAS  Google Scholar 

  7. Tang, H.Q., Zhu, J.T., Tang, Z.Y., and Ma, C.X., Aldoped Li2ZnTi3O8 as an effective anode material for lithium-ion batteries with good rate capabilities, J. Electroanal. Chem., 2014, vol. 731, pp. 60–66.

    Article  CAS  Google Scholar 

  8. Hong, Z.S., Zheng, X.Z., Ding, X.K., Jiang, L.L., Wei, M.D., and Wei, K.M., Complex spinel titanate nanowires for a high rate lithium-ion battery, Energy Environ. Sci., 2011, vol. 4, pp. 1886–1891.

    Article  CAS  Google Scholar 

  9. Hong, Z.S., Wei, M.D., Ding, X.K., Jiang, L.L., and Wei, K.M., Li2ZnTi3O8 nanorods: a new anode material for lithium-ion battery, Electrochem. Commun., 2010, vol. 12, pp. 720–723.

    Article  CAS  Google Scholar 

  10. Liu, T., Tang, H., Zan, L., and Tang, Zh., Comparative study of Li2ZnTi3O8 anode material with good high rate capacities prepared by solid state, molten salt and sol–gel methods, J. Electroanal. Chem., 2016, vol. 771, pp. 10–16.

    Article  CAS  Google Scholar 

  11. Chen, B., Dub, Ch., Zhang, Y., Sun, R., Zhou, L., and Wang, L., A new strategy for synthesis of lithium zinc titanate as an anode material for lithium ion batteries, Electrochim. Acta, 2015, vol. 159, pp. 102–110.

    Article  CAS  Google Scholar 

  12. Xu Yu, Hong, Zh., Xia, L., Yang, J., and Wei, M., One step sol–gel synthesis of Li2ZnTi3O8/C nanocomposite with enhanced lithium-ion storage properties, Electrochim. Acta, 2013, vol. 88, pp. 74–78.

    Article  CAS  Google Scholar 

  13. Wang, L., Chen, B., Meng, Zh., Luo, B., Wang, X., and Zhao, Y., High performance carbon-coated lithium zinc titanate as an anode material for lithium-ion batteries, Electrochim. Acta, 2016, vol. 188, pp. 135–144.

    Article  CAS  Google Scholar 

  14. Yaroslavtsev, A.B., Khimiya tverdogo tela (Solid-State Chemistry), Moscow: Nauchnyi Mir, 2009.

    Google Scholar 

  15. Wu, Z.S., Ren, W.C., Wen, L., Gao, L.B., Zhao, J.P., Chen, Z.P., Zhou, G.M., Li, F., and Cheng, H.M., Graphene anchored with Co3O4 nanoparticles as anode of lithium ion nanoparticles as anode of lithium ion capacity and cyclic performance, ACS Nano, 2010, vol. 4, pp. 3187–3197.

    Article  CAS  Google Scholar 

  16. Zhang, W.M., Wu, X.L., Hu, J.S., Guo, Y.G., and Wan, L.J., a-Fe2O3 nanotubes in gas sensor and lithium-ion batteries applications, Adv. Mater., 2005, vol. 17, pp. 582–586.

    Article  Google Scholar 

  17. Nanoparticle Technology Handbook, Hosokawa, M., Nogi, K., Naito, M., and Yokoyama, T., Eds., Amsterdam: Elsevier, 2012, 2nd ed.

  18. Borghols, W.J.H., Wagemaker, M., Lafont, U., Kelde, E.M., and Mulder, F.M., Size effects in the Li4 + x Ti5O12 spinel, J. Am. Chem. Soc., 2009, vol. 131, pp. 17786–17792.

    Article  CAS  Google Scholar 

  19. Stenina, I.A., Kulova, T.L., Skundin, A.M., and Yaroslavtsev, A.B., Anode material based on nanosized lithium titanate, Russ. J. Inorg. Chem., 2015, vol. 60, no. 11, pp. 1380–1383.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Stenina.

Additional information

Original Russian Text © P.A. Nikiforova, I.A. Stenina, T.L. Kulova, A.M. Skundin, A.B. Yaroslavtsev, 2016, published in Neorganicheskie Materialy, 2016, Vol. 52, No. 11, pp. 1211–1216.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikiforova, P.A., Stenina, I.A., Kulova, T.L. et al. Effect of particle size on the conductive and electrochemical properties of Li2ZnTi3O8 . Inorg Mater 52, 1137–1142 (2016). https://doi.org/10.1134/S002016851611011X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016851611011X

Keywords

Navigation