Skip to main content
Log in

Copper(II) alkyl- and benzylnitrosohy-droxylaminates as precursors for the synthesis of copper(i) oxide micro- and nanoparticles of various morphologies

  • Published:
Inorganic Materials Aims and scope

Abstract

We describe the thermal decomposition of a number of copper(II) alkyl- and benzylnitrosohy-droxylaminates via thermostating in polyethylene glycol and 2-dodecyl-1H-imidazole for various lengths of time. This process is shown to lead to the formation of copper(I) oxide nanoparticles, which have been characterized by X-ray diffraction and electron spectroscopy. The starting copper(II) nitrosohydroxylaminates have been characterized by thermogravimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gusev, A.I., Nanomaterialy, nanostruktury, nanotekhnologii (Nanomaterials, Nanostructures, and Nanotechnologies), Moscow: Fizmatlit, 2005.

    Google Scholar 

  2. Gong, Y., Zhou, M.F., and Andrews, L., Spectroscopic and theoretical studies of transition metal oxides and dioxygen complexes, Chem. Rev., 2009, vol. 109, pp. 6765–6808.

    Article  CAS  Google Scholar 

  3. Li, X.Q., Zhou, L.P., Gao, J., et al., Synthesis of Mn3O4 nanoparticles and their catalytic applications in hydrocarbon oxidation, Power Technol., 2009, vol. 190, pp. 324–326.

    Article  CAS  Google Scholar 

  4. Huang, Z.B., Zhu, Y., Wang, S.T., and Yin, G.F., Controlled growth of aligned arrays of Cu-ferrite nanorods, Cryst. Growth Des., 2006, vol. 6, pp. 1931–1935.

    Article  CAS  Google Scholar 

  5. Manna, S., Deb, A.K., Jagannath, J., and De, S.K., Synthesis and room temperature ferromagnetism in Fe doped NiO nanorods, J. Phys. Chem., 2008, vol. 112, pp. 10 659–10 662.

    Article  CAS  Google Scholar 

  6. Lou, X.W., Deng, D., Lee, J.Y., Feng, J., and Archer, L.A., Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes, Adv. Mater., 2008, vol. 20, pp. 258–262.

    Article  CAS  Google Scholar 

  7. Siriwardane, R., Tian, H.J., Richards, G., Simonyi, T., and Poston, J., Chemical-looping combustion of coal with metal oxide oxygen carriers, Energy Fuels, 2009, vol. 23, pp. 3885–3892.

    Article  CAS  Google Scholar 

  8. Rackauskas, S., Nasibulin, A.G., Jiang, H., Tian, Y., et al., A novel method for metal oxide nanowire synthesis, Nanotechnology, 2009, vol. 20, paper 165 603.

  9. Yu, Q.J., Ma, X.H., Lan, Z., Wang, M.Z., and Yu, C.J., Structure transition of CuOx nanoparticles in copper silica nanocomposites, J. Phys. Chem., 2009, vol. 113, pp. 6969–6975.

    CAS  Google Scholar 

  10. Zhao, Y., Zhao, J., Li, Y., Ma, D., Hou, Sh., et al., Room temperature synthesis of 2D CuO nanoleaves in aqueous solution, Nanotechnology, 2011, vol. 22, paper 115 604.

  11. Stoimenov, P.K., Metal oxide nanoparticles as bactericidal agents, Langmuir, 2002, vol. 18, pp. 6679–6686.

    Article  CAS  Google Scholar 

  12. Ren, G., Hu, D., Cheng, E., Vargas-Reus, M.A., Reip, P., and Allaker, R.P., Characterisation of copper oxide nanoparticles for antimicrobial applications, Int. J. Antimicrobial Agents, 2009, vol. 33, pp. 587–590.

    Article  CAS  Google Scholar 

  13. Cioffi, N., Torsi, L., Ditaranto, N., Tantillo, G., Ghibelli, L., and Sabbatini, L., Copper nanoparticle polymer composites with antifungal and bacteriostatic properties, Chem. Mater., 2005, vol. 17, pp. 5255–5262.

    Article  CAS  Google Scholar 

  14. Rupareli, J.P., Chatterjee, A.K., Duttagupta, S.P., and Mukherji, S., Strain specificity in antimicrobial activity of silver and copper nanoparticles, Acta Biomater., 2008, vol. 4, pp. 707–771.

    Article  Google Scholar 

  15. Yuhas, B.D. and Yang, P., Nanowire-based all-oxide solar cells, J. Am. Chem. Soc., 2009, vol. 131, pp. 3756–3761.

    Article  CAS  Google Scholar 

  16. Briskman, R.N., A study of electrodeposited cuprous oxide photovoltaic cells, Solar Energy Mater. Solar Cells, 1992, vol. 27, pp. 361–368.

    Article  CAS  Google Scholar 

  17. Liu, R., Kulp, E.A., Oba, F., Bohannan, E.W., Ernst, F., and Switzer, J.A., Epitaxial electrodeposition of highaspect-ratio Cu2O(110) nanostructures on InP(111), Chem. Mater., 2005, vol. 17, pp. 725–729.

    Article  CAS  Google Scholar 

  18. Ghosh, M. and Rao, C.N., Solvothermal synthesis of CdO and CuO nanocrystals, Chem. Phys. Lett., 2004, vol. 393, pp. 493–497.

    Article  CAS  Google Scholar 

  19. Thimmaiah, S., Rajamathi, M., Singh, N., et al., A solvothermal route to capped nanoparticles of Γ-Fe2O3 and CoFe2O4, J. Mater. Chem., 2001, vol. 11, pp. 3215–3221.

    Article  CAS  Google Scholar 

  20. Gautama, U.K., Ghosh, M., and Rao, C.N., A strategy for the synthesis of nanocrystal films of metal chalcogenides and oxides by employing the liquid-liquid interface, Chem. Phys. Lett., 2003, vol. 381, pp. 1–6.

    Article  Google Scholar 

  21. Kol’cheva, N.V and Petrukhin, O.M., Electronic structure and special analytical properties of N-nitroso-N-cyclohexylhydroxylamine and its chelates, Koord. Khim., 1986, vol. 12, no. 4, pp. 449–462.

    Google Scholar 

  22. Yu, Y., Du, F.P., Yu, J.C., Zhuang, Y.Y., and Wong, P.K., One-dimensional shape-controlled preparation of porous Cu2O nano-whiskers by using CTAB as a template, J. Solid State Chem., 2004, vol. 177, pp. 4640–4647.

    Article  CAS  Google Scholar 

  23. Kovalchukova, O.V., Bostanabad, A.S., Stash, A.I., Strashnova, S.B., and Zyuzin, I.N., Synthesis, spectral and crystallographic studies of coordination compounds of some d and f metals with N-nitroso-N-(methyl)ethylhydroxylamine, Russ. J. Inorg. Chem., 2014, vol. 59, no. 3, pp. 192–195.

    Article  CAS  Google Scholar 

  24. Zyuzin, I.N., Nechiporenko, G.N., Golovina, N.I., Trofimova, R.F., and Loginova, M.V., Synthesis and structure of di(NNO-azoxy)formals and some related N-alkyl-N-alkoxydiazene-N-oxides, Izv. Akad. Nauk, Ser. Khim., 1997, no. 8, pp. 1486–1493.

    Google Scholar 

  25. Bottei, R.S. and Schneggenburger, R.G., Thermal and spectral study of some divalent metal chelates of cupferron and dicupferron, J. Inorg. Nucl. Chem., 1970, vol. 32, pp. 1525–1545.

    Article  CAS  Google Scholar 

  26. PDWin Software Package for X-Ray Diffraction Studies, St. Petersburg: OAO Burevestnik, 2010.

  27. ICDD PDF-2, Release 2007.

  28. Bai, Y., Yang, T., Gu, Q., and Cheng, G., Shape control mechanism of cuprous oxide nanoparticles in aqueous colloidal solutions, Powder Technol., 2012, vol. 227, pp. 35–42.

    Article  CAS  Google Scholar 

  29. He, P., Shen, X., and Gao, H., Size-controlled preparation of Cu2O octahedron nanocrystals and studies on their optical absorption, J. Colloid. Interface Sci., 2005, vol. 284, pp. 510–515.

    Article  CAS  Google Scholar 

  30. Rittermeier, A., Miao, Sh., Schroter, M.K., et al., The formation of colloidal copper nanoparticles stabilized by zinc stearate: one-pot single-step synthesis and characterization of the core-shell particles, Phys. Chem. Chem. Phys., 2009, vol. 11, pp. 8358–8366.

    Article  CAS  Google Scholar 

  31. Borgohain, K., Murase, N., and Mahamuni, S.J., Synthesis and properties of Cu2O quantum particles, Appl. Phys., 2002, vol. 92, pp. 1292–1297.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Kovalchukova.

Additional information

Original Russian Text © O.V. Kovalchukova, Ali Sheikh Bostanabad, N.N. Lobanov, T.A. Rudakova, P.V. Strashnov, Yu.A. Skarzhevskii, I.N. Zyuzin, 2014, published in Neorganicheskie Materialy, 2014, Vol. 50, No. 11, pp. 1183–1188.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalchukova, O.V., Bostanabad, A.S., Lobanov, N.N. et al. Copper(II) alkyl- and benzylnitrosohy-droxylaminates as precursors for the synthesis of copper(i) oxide micro- and nanoparticles of various morphologies. Inorg Mater 50, 1093–1098 (2014). https://doi.org/10.1134/S0020168514110090

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168514110090

Keywords

Navigation