Skip to main content
Log in

Self-propagating high-temperature synthesis of ultrafine and nanometer-sized TiC particles

  • Published:
Inorganic Materials Aims and scope

Abstract

The feasibility of preparing ultrafine and nanometer-sized titanium carbide particles by self-propagating high-temperature synthesis (SHS) has been studied. Data are presented on the structure formation of TiC powders during SHS with a reduction step. Basic to this process is an exothermic reaction between titanium dioxide, magnesium metal, and carbon. The effects of the composition of the starting mixture, relationship between its components, and the morphology and particle size of the starting TiO2 powder on the particle size of the forming material have been investigated. The TiC powder was recovered from the sinter cake by chemical dispersion, a chemothermal treatment of the synthesis product in different solutions. The results demonstrate that treatment of the sinter cake with appropriate solutions removes impurities and causes imperfect intergranular layers to dissolve. As a result, the cake breaks down into homogeneous single-crystal particles. Subsequent treatment in different solutions further reduces the particle size of the powder. The effect of the composition of the dispersing solution on the particle size of the TiC powder has been studied. Our results made it possible to identify conditions for the preparation of titanium carbide powders containing up to 70% of particles less than 0.3 μm in size by SHS followed by chemical dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kosolapova, T.Ya., Karbidy (Carbides), Moscow: Metallurgiya, 1968.

    Google Scholar 

  2. Kosolapova, T.Ya. and Makarenko, G.N., Processes for the Preparation of Pure Carbides, in Tugoplavkie karbidy (Refractory Carbides), Kiev: Naukova Dumka, 1970, pp. 16–20.

    Google Scholar 

  3. Makarenko, G.N. and Miller, T.N., Plasma Synthesis of Refractory Carbides, in Karbidy i splavy na ikh osnove (Carbides and Related Alloys), Kiev: Naukova Dumka, 1976, pp. 5–9.

    Google Scholar 

  4. Kosolapova, T.Ya., Makarenko, G.N., and Zyatkevich, D.P., Plasma Synthesis of Refractory Compounds, Zh. Vses. Khim. O-va. im. D. I. Mendeleeva, 1979, vol. 24, no. 3, pp. 328–333.

    Google Scholar 

  5. Popov, V.E. and Gurin, V.N., Preparation of Crystalline Refractory Carbides from Solutions in Low-Melting-Point Metals, in Karbidy i splavy na ikh osnove (Carbides and Related Alloys), Kiev: Naukova Dumka, 1976, pp. 21–26.

    Google Scholar 

  6. Merzhanov, A.G., Fizicheskaya khimiya: sovremennye problemy (Current Issues in Physical Chemistry), Kolotyrkin, Ya.M., Ed., Moscow: Khimiya, 1983.

    Google Scholar 

  7. Merzhanov, A.G., Combustion: New Manifestation of an Ancient Process, Chemistry of Advanced Materials, Rao, C.N.R., Ed., Oxford: Blackwell, 1992, pp. 19–39.

    Google Scholar 

  8. Lagunov, Yu.V., Pikalov, S.N., Kolomoets, G.G., and Mamyan, S.S., Preparation of Boron Nitride by Enriching a Reduction Step SHS Product, Materialy 3-ei vsesoyuznoi konferentsii po tekhnologii goreniya (Proc. 3rd All-Union Conf. on Combustion Technologies), Chernogolovka, 1981, vol. 1, pp. 40–42.

    Google Scholar 

  9. Vershinnikov, V.I., Ignat’eva, T.I.,, Goziyan, A.V., et al., RF Patent 2 200 128, Byull. Izobret., 2000, no. 7.

  10. Borovinskaya, I.P., Chemical Classes of the SHS Processes and Materials, Pure Appl. Chem., 1992, vol. 64, no. 7, pp. 919–940.

    Article  CAS  Google Scholar 

  11. Borovinskaya, I.P., Ignat’eva, T.I., Vershinnikov, V.I., et al., Preparation of Ultrafine Boron Nitride Powders by Self-propagating High-Temperature Synthesis, Neorg. Mater., 2003, vol. 39, no. 6, pp. 698–704 [Inorg. Mater. (Engl. Transl.), vol. 39, no. 6, pp. 588–593].

    Article  Google Scholar 

  12. Borovinskaya, I.P., Ignat’eva, T.I., Vershinnikov, V.I., and Sachkova, N.V., Preparation of Tungsten Carbide Nanopowders by Self-propagating High-Temperature Synthesis, Neorg. Mater., 2004, vol. 40, no. 10, pp. 1190–1196 [Inorg. Mater. (Engl. Transl.), vol. 40, no. 10, pp. 1043–1048].

    Google Scholar 

  13. El-Eskandarany, M.S. and Sherif, M., Synthesis of Nanocrystalline Titanium Carbide Alloy Powders by Mechanical Solid State Reaction, Metall. Mater. Trans. A, 1996, vol. 27, p. 2374.

    Article  Google Scholar 

  14. LaSalvia, J.C., Meyer, L.W., and Meyers, M.A., Densification of Reaction-Synthesized Titanium Carbide by High-Velocity Forging, J. Am. Ceram. Soc., 1992, vol. 75, p. 592.

    Article  CAS  Google Scholar 

  15. Cochepin, B., Heial, E.M., Vrel, D., and Dubois, S., Microstructural Study of TiC Formed during Initial Stages of Combustion Synthesis, Int. J. Self-Propag. High-Temp. Synth., 2004, vol. 13, no. 1.

  16. Vasserman, A.M., Kunin, L.A., and Surovoi, Yu.N., Opredelenie gazov v metallakh (Gas Determination in Metals), Moscow: Nauka, 1976.

    Google Scholar 

  17. Remy, H., Lehrbuch der anorganische Chemie, Leipzig: Akademie, 1960. Translated under the title Kurs neorganicheskoi khimii, Moscow: Inostrannaya Literatura, 1963, vol. 1, p. 265.

    Google Scholar 

  18. Remy, H., Lehrbuch der anorganische Chemie, Leipzig: Akademie, 1960. Translated under the title Kurs neorganicheskoi khimii, Moscow: Inostrannaya Literatura, 1963, vol. 1, p. 507.

    Google Scholar 

  19. Spravochnik po elektrokhimii (Handbook of Electrochemistry), Sukhotin, A.M., Ed., Leningrad: Khimiya, 1981.

    Google Scholar 

  20. Avgustinik, A.I., Drozdetskaya, G.V., and Ordan’yan, S.S., Chemical Interaction between Titanium Carbide and Water, Poroshk. Metall. (Kiev), 1967, no. 6, pp. 53–57.

  21. Kolenko, E.A., Tekhnologiya laboratornogo eksperimenta. Spravochnik (Experimental Tools in the Laboratory: A Handbook), St. Petersburg: Politekhnika, 1994.

    Google Scholar 

  22. Kugai, L.N., Kornilova, V.I., Nazarchuk, T.N., and Borovinskaya, I.P., Chemical Properties of Powders of Titanium Carbide in Its Homogeneity Range, Poroshk. Metall. (Kiev), 1980, no. 9, pp. 58–61.

  23. Kuzenkova, M.A., Structure, Properties, and Applications of Powders of Refractory Compounds Prepared by Different Methods, Materialy vsesoyuznoi konferentsii po tekhnologii goreniya (Proc. All-Union Conf. on Combustion Technologies), Chernogolovka, 1987, vol. 2, pp. 47–50.

    Google Scholar 

  24. Andersson, Karin M. and Bergström, L., Oxidation and Dissolution of Tungsten Carbide Powder in Water, Int. J. Refract. Met. Hard Mater., 2000, vol. 18, nos. 2–3, pp. 121–129.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Borovinskaya.

Additional information

Original Russian Text © I.P. Borovinskaya, T.I. Ignat’eva, O.M. Emel’yanova, V.I. Vershinnikov, V.N. Semenova, 2007, published in Neorganicheskie Materialy, 2007, Vol. 43, No. 11, pp. 1343–1350.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borovinskaya, I.P., Ignat’eva, T.I., Emel’yanova, O.M. et al. Self-propagating high-temperature synthesis of ultrafine and nanometer-sized TiC particles. Inorg Mater 43, 1206–1214 (2007). https://doi.org/10.1134/S002016850711009X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016850711009X

Keywords

Navigation