Skip to main content
Log in

Kinetics of Ibuprofen Degradation in Aqueous Solution by the Action of Direct-Current Glow Discharge in Air

  • PLASMA CHEMISTRY
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

The kinetics of decomposition of ibuprofen in its aqueous solution by the action of atmospheric-pressure direct-current discharge in ambient air has been studied. The treated solution served as both the cathode and the anode of the discharge system. Degradation rates and effective degradation rate constants have been determined. Based on these data, the energy yields and degrees of destruction were calculated for various discharge powers (discharge currents). Discharges in a liquid cathode and anode differ little in the energy yields of degradation. But the rates and rate constants of degradation in the liquid cathode are higher than in the liquid anode. Therefore, the complete destruction of ibuprofen in the liquid cathode is achieved within shorter discharge times. A comparison is made of the destruction efficiencies for the cases of solution treatment using glow, dielectric barrier, and pulsed corona discharges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Takagi, T., Ramachandran, C., Bermejo, M., Yamashita, S., Yu, L.X., and Amidon, G.L., Mol. Pharm., 2006, vol. 3, p. 631.

    Article  CAS  PubMed  Google Scholar 

  2. Bound, J.P. and Voulvoulis, N., Chemosphere, 2004, vol. 56, p. 1143.

    Article  CAS  PubMed  Google Scholar 

  3. Ternes, T.A. and Joss, A., Human Pharmaceuticals, Hormones and Fragrances: The Challenge of Micropollutants in Urban Water Management, London: IWA, 2006.

    Google Scholar 

  4. Myers, R.L., The 100 Most Important Chemical Compounds: A Reference Guide, Westport, CT: Greenwood, 2007, p. 352.

    Google Scholar 

  5. Ansari, M., Moussavi, G., Ehrampoosh, M.H., and Giannakis, S., J. Water Process Eng., 2023, vol. 51, p. 103371.

  6. Magureanu, M., Bilea, F., Bradu, C., and Hong, D., J. Hazard. Mater., 2021, vol. 417, p. 125481.

    Article  CAS  PubMed  Google Scholar 

  7. Shutov, D.A., Ivanov, A.N., Rakovskaya, A.V., Smirnova, K.V., Manukyan, A.S., and Rybkin, V.V., J. Phys. D: Appl. Phys., 2020, vol. 53, no. 28, p. 445202.

    Article  CAS  Google Scholar 

  8. Filippova, N.I., Vainshtein, V.A., Son, A.V., and Minina, S.A., Razrab. Registr. Lekarst. Sredstv, 2017, no. 1, p. 58.

  9. Bobkova, E.S. and Rybkin, V.V., Plasma Chem. Plasma Process., 2015, vol. 35, no. 1, p. 133.

    Article  CAS  Google Scholar 

  10. Marković, M., Jović, M., Stanković, D., Kovačević, V., Roglić, G., Gojgić-Cvijović, G., and Manojlović, D., Sci. Total Environ., 2015, vol. 505, p. 1148.

    Article  PubMed  Google Scholar 

  11. Zeghioud, H., Nguyen-Tri, P., Khezami, L., Amrane, A., and Assadi, A.A., J. Water Process Eng., 2020, vol. 38, p. 101664.

    Article  Google Scholar 

  12. Shutov, D.A., Smirnova, K.V., Ivanov, A.N., and Rybkin, V.V., Plasma Chem. Plasma Process., 2023, vol. 43, no. 3, p. 577.

    Article  CAS  Google Scholar 

  13. Shutov, D.A., Batova, N.A., Smirnova, K.V., Ivanov, A.N., and Rybkin, V.V., J. Phys. D: Appl. Phys., 2022, vol. 55, no. 34, p. 345206.

    Article  Google Scholar 

  14. Smirnov, S.A., Zalipaeva, Ya.V., and Rybkin, V.V., Plasma Chem. Plasma Process., 2014, vol. 34, no. 4, p. 721.

    Article  Google Scholar 

  15. Shutov, D.A., Artyukhov, A.I, Ivanov, A.N., and Rybkin, V.V., Plasma Phys. Rep., 2019, vol. 45, no. 11, p. 997.

    Article  CAS  Google Scholar 

  16. Aziz, K.H.H., Miessner, H., Mueller, S., Kalass, D., Moeller, D., Khorshid, I., and Rashid, M.A.M., Chem. Eng. J., 2017, vol. 313, p. 1033.

    Article  Google Scholar 

  17. Zeng, J., Yang, B., Wang, X., Li, Z., Zhang, X., and Lei, L., Chem. Eng. J., 2015, vol. 267, p. 282.

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Higher Education and Science of the Russian Federation, project no. FZZW-2023-0010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Rybkin.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by S. Zatonsky

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ignatiev, A.A., Ivanova, P.A., Ivanov, A.N. et al. Kinetics of Ibuprofen Degradation in Aqueous Solution by the Action of Direct-Current Glow Discharge in Air. High Energy Chem 57, 537–540 (2023). https://doi.org/10.1134/S001814392306005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001814392306005X

Keywords:

Navigation