Skip to main content
Log in

Defluorination and Mineralization of Difluorophenols in Water by Anodic Contact Glow Discharge Electrolysis

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Anodic contact glow discharge electrolysis (CGDE) is a DC-excited atmospheric pressure discharge, in which a steady non-thermal plasma is generated locally between the surface of an electrolytic solution and an anode in contact with it. The I–U characteristics of CGDE were investigated. The plasma temperatures were estimated to be in the range, 1373–2045 K. Hydroxyl radicals and hydrogen peroxide were the main oxidants generated by CGDE. The hydrogen peroxide concentration reached 31.2 mmol/L (mM) in a phosphate buffer solution without organic substrates. During CGDE, the DFPs and the corresponding total organic carbon (TOC) in water were consumed. Most of the fluorine atoms in the DFPs were converted to fluoride ions, and the fluoride concentration increased steadily. An analysis of the hydroxylation of DFPs suggested that the hydroxyl radicals generated by CGDE were the key species responsible for the degradation of DFPs, and the possible mechanistic routes of the mineralization of DFPs are proposed. The disappearance of DFPs and the TOC as well as the defluorination of the DFPs followed first-order kinetics. The rate of TOC disappearance was relatively constant: 1.00 ± 0.05 × 10−2 min−1. The order of disappearance of the DFPs was 2,6-DFP > 2,3-DFP > 2,5-DFP > 2,4-DFP > 3,4-DFP > 3,5-DFP. In contrast, the order of defluorination of the DFPs was 2,5-DFP > 2,3-DFP > 2,6-DFP > 2,4-DFP > 3,4-DFP > 3,5-DFP. Overall, the order of the reaction rates for each DFP was kDFP > kdF > kTOC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shoute LCT, Mittal JP (1996) J Phys Chem 100:3016

    Article  CAS  Google Scholar 

  2. Liu YJ, Jiang XZ (2008) Plasma Chem Plasma Process 28(1):15

    Article  CAS  Google Scholar 

  3. Joshi RP, Thagard SM (2013) Plasma Chem Plasma Process 33(1):17

    Article  CAS  Google Scholar 

  4. Zeng MD, Zhao K, Lu Y, Ou YJ, Liu DQ, Wang M, Ma YM (2015) Plasma Chem Plasma Process 35(4):721

    Article  CAS  Google Scholar 

  5. Hao XL, Zhou MH, Zhang Y, Lei LC (2006) Plasma Chem Plasma Process 26(5):455

    Article  CAS  Google Scholar 

  6. Wen YZ, Jiang XZ, Liu WP (2002) Plasma Chem Plasma Process 22(1):175

    Article  CAS  Google Scholar 

  7. Du CM, Yan JH, Cheron BG (2007) Plasma Chem Plasma Process 27(5):635

    Article  CAS  Google Scholar 

  8. Dayal AR, Pfluger D, Kearney TN, Western RJ, McAllister T (2004) Plasma Chem Plasma Process 24(4):573

    Article  CAS  Google Scholar 

  9. Key BD, Howell RD, Criddle CS (1997) Environ Sci Technol 31:2445

    Article  CAS  Google Scholar 

  10. Ravichandran L, Selvam K, Swaminathan M (2007) Aust J Chem 60:951

    Article  CAS  Google Scholar 

  11. Ferreira MIM, Marchesi JR, Janssen DB (2008) Appl Microbiol Biotechnol 78:709

    Article  CAS  Google Scholar 

  12. Franco AR, Ferreira AC, Castro PML (2014) Chemosphere 111:260

    Article  CAS  Google Scholar 

  13. Goskonda S, Catallo WJ, Junk T (2002) Waste Manag 22:351

    Article  CAS  Google Scholar 

  14. Tzedakis T, Savall A, Clifton MJ (1989) J Appl Electochem 19:911

    Article  CAS  Google Scholar 

  15. Liu YJ (2009) J Hazard Mater 166:1495

    Article  CAS  Google Scholar 

  16. Yang HM, Matsumoto Y, Tezuka M (2009) J Environ Sci (Suppl 1):142

  17. Yang HM, Tezuka M (2011) J Phys D Appl Phys 44:155203

    Article  Google Scholar 

  18. Yang HM, Tezuka M (2011) J Environ Sci 23:1044

    Article  CAS  Google Scholar 

  19. Hickling A, Ingram MD (1964) Trans Faraday Soc 60:783

    Article  CAS  Google Scholar 

  20. Hickling A (1971) In: Bockris JOM, Conway BE (eds) Modern aspects of electrochemistry, vol 6. Butterworths, London, p 329

    Google Scholar 

  21. Bruggeman P, Leys C (2009) J Phys D Appl Phys 42:053001

    Article  Google Scholar 

  22. Bruggeman P, Schram D, Rego R, Kong MG, Leys C (2009) Plasma Sources Sci Technol 18:025017

    Article  Google Scholar 

  23. Gangal U, Srivastava M, Sen Gupta SK (2010) Plasma Chem Plasma Process 30(2):299

    Article  CAS  Google Scholar 

  24. Gaisin AR, Son EE (2005) High Temp 43:1

    Article  CAS  Google Scholar 

  25. Chen Q, Saito K, Takemura Y, Shirai H (2008) Thin Solid Films 516:6688

    Article  CAS  Google Scholar 

  26. Yang HM, An BG, Wang SY, Li LX, Jin WJ, Li LH (2013) J Environ Sci 25(6):1

    Google Scholar 

  27. Yang HM, Cai X, Tezuka M (2013) Plasma Chem Plasma Process 33:1043

    Article  CAS  Google Scholar 

  28. Wang L, Jiang XZ, Liu YJ (2008) J Hazard Mater 154:1106

    Article  CAS  Google Scholar 

  29. Jin XL, Wang XY, Zhang HM, Xia Q, Wei DB, Yue JJ (2010) Plasma Chem Plasma Process 30:429

    Article  CAS  Google Scholar 

  30. Wang XY, Zhou MH, Jin XL (2012) Electrochim Acta 80:501

    Article  Google Scholar 

  31. Gong JY, Wang J, Xie WJ, Cai WM (2008) J Appl Electrochem 38:1749

    Article  CAS  Google Scholar 

  32. Liu YJ (2009) J Hazard Mater 166:1495

    Article  CAS  Google Scholar 

  33. Gao J, Wang X, Hu Z, Deng H, Hou J, Lu X, Kang J (2003) Water Res 37:267

    Article  CAS  Google Scholar 

  34. Tomizawa S, Tezuka M (2006) Plasma Chem Plasma Process 26(1):43

    Article  CAS  Google Scholar 

  35. Minero C, Aliberti C (1991) Langmuir 7:928

    Article  CAS  Google Scholar 

  36. Aleshina GR, Sokolskaya NN, Sukhina OG (1979) Khim Prom-St Ser Reakt Osobo Chist Ves chestva 3:5

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51308276), Scientific Research Foundation for Doctors of Liaoning Province (Grant No. 20141123), Growth Plan for Distinguished Young Scholars in Colleges and Universities of Liaoning Province China (LJQ2015055), Anshan Science and Technology Program Project (Grant No. 2961), the National Natural Science Foundation of China (51102126), Innovative Research Team in Colleges and Universities of Liaoning Province China (LT2014007), Natural Science Foundation of Liaoning Province, China (2015020634).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiming Yang or Maowei Ju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Zhao, X., Mengen, G. et al. Defluorination and Mineralization of Difluorophenols in Water by Anodic Contact Glow Discharge Electrolysis. Plasma Chem Plasma Process 36, 993–1009 (2016). https://doi.org/10.1007/s11090-016-9715-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-016-9715-4

Keywords

Navigation