Skip to main content
Log in

Photovoltaic Effect in Phthalocyanine-Based Organic Solar Cells: 2. Trapping of Molecular Excitons by Impurities

  • PHOTONICS
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

Trapping of molecular excitons (MEs) by ionizing impurities is a fast initial step of the photovoltaic effect in organic solar cells. Values for the ME trapping rate constant at a fixed impurity concentration NI have been found in terms of the model of diffusion-controlled bimolecular reactions. The model takes into account two pathways of quasi-steady-state ME trapping, contact and bulk capture (caused by dipole–dipole interaction with an impurity), which are determined by the ME diffusion length lS, the minimum radius of approach of partners a0, and the Förster radius RS. The trapping quantum yield at RS > a0 is YS = (1 + b)−1, where b−1 ≈ 4π(2lDRS)3/2NI. Possible doping conditions when YS ~ 1 at NI ~ 1018 cm−3 are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Benderskii, V.A. and Kim, I.P., High Energy Chem., 2020, vol. 54, no. 6, p. 423.

  2. Usov, N.N. and Benderskii, V.A., Phys. Status Solidi B, 1970, vol. 37, p. 535.

    Article  CAS  Google Scholar 

  3. Benderskii, V.A., Belkind, A.I., Fedorov, M.I., and Aleksandrov, S.B., Fiz. Tverd. Tela, 1972, vol. 14, p. 790.

    CAS  Google Scholar 

  4. Lakowicz, J.R., Principles of Fluorescence Spectroscopy, New York: Springer, 2006.

    Book  Google Scholar 

  5. Loura, L.M.S., Int. J. Mol. Sci., 2012, vol. 13, p. 15252.

    Article  CAS  Google Scholar 

  6. Muller, S.M., Galliardi, H., Schneider, J., Barisa, G., and Seidel, T., Front. Plant Sci., 2013, vol. 4, no. 00413.

  7. Agranovich, V.M., Excitations in Organic Solids, New York: AIP, 2008.

    Book  Google Scholar 

  8. Milan, R., Selopal, G.S., Cavazzini, M., Orlandi, S., Boaretto, P., Caranioni, S., Concina, I., and Pazzi, G., Sci. Rep., 2010, vol. 10, no. 1176.

  9. Pereira, M.L., da Cuncha, W.F., da Sousa, R.T., Silva, G.M., and Ribeira, L.A., J. Phys. Chem. C, 2019, vol. 123, p. 13410.

    Article  CAS  Google Scholar 

  10. Benderskii, V.A., Brikenshtein, V.K., Lavrushko, A.G., and Filippov, P.G., Phys. Status Solidi B, 1978, vol. 86, p. 449.

    Article  CAS  Google Scholar 

  11. Benderskii, V.A., Brikenshtein, V.K., and Fi-lippov, P.G., Phys. Status Solidi B, 1983, vol. 117, p. 9.

    Article  Google Scholar 

  12. Akselrod, G.M., Deotare, P.B., Thompson, N., Lee, J., Tisdale, W.A., Baldo, M.A., Menon, V.M., and Bulovic, V., Nat. Commun., 2014, vol. 5, no. 3642.

  13. Smith, M.B. and Michl, J., Annu. Rev. Phys. Chem., 2013, vol. 64, p. 361.

    Article  CAS  Google Scholar 

  14. Bardeen, C.J., Annu. Rev. Phys. Chem., 2014, vol. 65, p. 127.

    Article  Google Scholar 

  15. Yuen-Zhou, J., Saikin, S.K., Yao, N.Y., and Asparo-Guzin, A., Nat. Mater, 2014, vol. 13, p. 1026.

  16. Sakaribara, Y., Bera, R.N., Mizutani, T., Ishida, K., Tokumoto, M., and Tami, T., J. Phys. Chem. B, 2001, vol. 105, p. 1547.

    Article  Google Scholar 

  17. Hestand, N.J. and Spako, F.C., Chem. Rev., 2018, vol. 118, p. 7069.

    Article  CAS  Google Scholar 

  18. Khan, A., Wang, M., Usman, R., Sun, H., Du, M., and Xu, C., Cryst. Growth Des. 2017, vol. 17, p. 1251.

    Article  CAS  Google Scholar 

  19. Guerrini, M., Cocchi, C., Calzolari, A., Varsano, D., and Corni, S., J. Phys. Chem., 2019, vol. 123, p. 6831.

    CAS  Google Scholar 

  20. Wang, J., Li, A., Xu, S., Geng, Y., Ye, L., Zhang, H., and Xu, W., ACS Omega, 2019, vol. 4, p. 10424.

    Article  CAS  Google Scholar 

  21. Muller, S.M., Galliardi, H., Schneider, J., Barisas, B.G., and Seidel, T., Front. Plant Sci., 2013, vol. 4, no. 00413.

  22. Allen, L.R. and Paci, E., J. Chem. Phys., 2009, vol. 131, no. 065101.

  23. Deplazes, E., Jayatilaka, D., and Corry, B., Phys. Chem. Chem. Phys., 2011, vol. 13, p. 11045.

    Article  CAS  Google Scholar 

  24. Allen, L.R. and Paci, E.J., Chem. Phys., 2009, vol. 131, no. 065101.

  25. Jones, G.A. and Bradshaw, D.S., Front. Phys., 2019, vol. 7, p. 100.

    Article  Google Scholar 

  26. Walter, M.G., Rudine, A.B., and Wamser, C.C., J. Porphyrins Phthalocyanines, 2010, vol. 14, p. 759.

    Article  CAS  Google Scholar 

  27. Kim, I., Havarinen, H.M., Wang, Z., Madakumi, S., Kim, Y., and Labbour, G.E., Chem. Mater., 2009, vol. 221, p. 4256.

    Article  Google Scholar 

  28. Iwasi, M., Suzuki, A., Akiyama, T., and Oku, T., Mater. Sci. Appl., 2014, vol. 5, p. 278.

    Google Scholar 

  29. Yuen, A.P., Jovanovic, S.M., Hoi, A.-M., Klenkler, R.A., Devenyi, G.A., Loutfy, R.O., and Preston, J.S., Sol. Energy, 2012, vol. 86, p. 1683.

    Article  CAS  Google Scholar 

  30. Guanes, S., Neugebauer, H., and Saisiftci, N.S., Chem. Rev., 2007, vol. 107, p. 1324.

    Article  Google Scholar 

  31. Fan, B., Zhong, W., Ying, L., Zhang, D., Li, M., Lin,Y., Xia, R., Liu, P., Yip, H.-L., Li, N., Ma, Y., Brabec, C.J., Huang, F., and Cao, Y., Nat. Commun., 2019, vol. 10, no. 41001.

  32. Ganesamoorty, R., Sathiyan, G., and Sarthivel, P., Sol. Energy Mater. Sol. Cells, 2017, vol. 161, p. 102. 31. Pandey, R., Gunavan, A.A., Mkhoyan, K.A., and Holmes, R.J., Adv. Funct. Mater., 2012, vol. 22, p. 617.

    Article  Google Scholar 

  33. Pandey R., Gunavan A.A., Mkhoyan K.A., Holmes R.J. // Adv. Funct. Mater. 2012. V. 22. P. 617.

  34. Kang h., Kim C., Kim J., Kwon S., Kim H., Lee K. // Adv. Mater. 2016. V. 28. P. 7821.

  35. Zhang, M., Ma, Y., and Zheng, C., Front. Chem., 2018, vol. 6, p. 427.

    Article  CAS  Google Scholar 

  36. Gaspar, H., Figueira, F., Pereira, L., Mendes, A., Viana, J.C., and Bernardo, D., Materials, 2018, vol. 11, p. 2560.

    Article  Google Scholar 

  37. Luceno-Sanchez, J.A., Diez-Pascual, A.M., and Capilla, R.P., Int. J. Mol. Sci., 2019, vol. 20, p. 976.

    Article  CAS  Google Scholar 

  38. Yokota, M. and Tanimoto, O., J. Phys. Soc. Jpn., 1967, vol. 22, p. 779.

    Article  CAS  Google Scholar 

  39. Golubov, S.I. and Konobeev, Y.V., Phys. Status Solidi B, 1973, vol. 56, p. 69.

    Article  Google Scholar 

  40. Gosele, U., Hauser, M., Klein, U.K.A., and Frey, R., Chem. Phys. Lett., 1975, vol. 34, p. 519.

    Article  Google Scholar 

  41. Hannewold, K. and Bobbert, P.A., Phys. Rev. B: Condens. Matter, 2005, vol. 72, no. 113202.

  42. Giannini, S., Carof, A., Ellis, M., Yang, H., Ziogros, O.G., Ghosh, S., and Blumberg, J., Nat. Commun., 2019, vol. 10, p. P.3843.

  43. Ortmann, F., Bechstead, F., and Hannewold, K., Phys. Status Solidi B, 2011, vol. 248, p. 511.

    Article  CAS  Google Scholar 

Download references

Funding

The work was carried out on the topic of State Assignment no. 0089-2019-0003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Benderskii.

Additional information

Translated by S. Zatonsky

APPENDIX

APPENDIX

Analysis of Equation (6)

Equation (6) and boundary conditions (11) contain a set of four characteristic lengths a0, lD, RS, and L. To simplify the analysis, one should find dimensionless parameters that are combinations of these lengths, i.e. go to new coordinates. In the low concentration limit for surface trapping (L−1 = 0, RS = 0), transformation of Eq. (10) leads to radial distribution (12) and trapping current (15) depending on one dimensionless parameter a0/lD. For a finite cell size, the solution of Eq. (21) is determined by two parameters: a0/lD and L/lD entering the boundary conditions. For bulk trapping, transformation (16) converts Eq. (6) into inhomogeneous equation (17) with one parameter q. The solution to Eq. (17) in the interval zLzz0 can be represented as a superposition of fundamental solutions of the homogeneous equation

$${{{{z}^{2}}{{d}^{2}}\Phi } \mathord{\left/ {\vphantom {{{{z}^{2}}{{d}^{2}}\Phi } {d{{z}^{2}}}}} \right. \kern-0em} {d{{z}^{2}}}} + {{zd\Phi } \mathord{\left/ {\vphantom {{zd\Phi } {dz}}} \right. \kern-0em} {dz}} - ({{{{z}^{2}} + 1} \mathord{\left/ {\vphantom {{{{z}^{2}} + 1} {16}}} \right. \kern-0em} {16}})y = 0$$
(A1)

as

$$\Phi (z) = A{{K}_{{{1 \mathord{\left/ {\vphantom {1 4}} \right. \kern-0em} 4}}}}(z) + B{{I}_{{{1 \mathord{\left/ {\vphantom {1 4}} \right. \kern-0em} 4}}}}(z),$$
(A2)

where I1/4(z) and K1/4(z) are the modified Bessel functions of the order 1/4, and the particular solution of the homogeneous equation in the neighborhood of zL, which has the form

$$\begin{gathered} \Phi (z) = {{\Phi }_{0}} + F(z),\,\,\,\,F(z) \\ = {{\left( {z{\text{/}}\alpha } \right)}^{{{{ - 1} \mathord{\left/ {\vphantom {{ - 1} 4}} \right. \kern-0em} 4}}}}{{\left( {{{1 + z} \mathord{\left/ {\vphantom {{1 + z} {16q}}} \right. \kern-0em} {16q}} + {{{{z}^{3}}} \mathord{\left/ {\vphantom {{{{z}^{3}}} q}} \right. \kern-0em} q}} \right)}^{{ - 1}}}. \\ \end{gathered} $$
(A3)

The coefficients in Eq. (A2) determine the boundary conditions

$$\begin{gathered} {{K}_{{{1 \mathord{\left/ {\vphantom {1 4}} \right. \kern-0em} 4}}}}({{z}_{0}})A + {{I}_{{{1 \mathord{\left/ {\vphantom {1 4}} \right. \kern-0em} 4}}}}({{z}_{0}})B = - F({{z}_{0}}), \\ K_{{{1 \mathord{\left/ {\vphantom {1 4}} \right. \kern-0em} 4}}}^{'}({{z}_{L}})A + I_{{{1 \mathord{\left/ {\vphantom {1 4}} \right. \kern-0em} 4}}}^{'}({{z}_{L}})B = - F{\kern 1pt} '({{z}_{L}}), \\ \end{gathered} $$
(A4)

where the prime denotes the derivative with respect to z. The quantum yield of surface and bulk trapping (18) is found numerically from Eqs. (A3) and (A4).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benderskii, V.A., Kim, I.P. Photovoltaic Effect in Phthalocyanine-Based Organic Solar Cells: 2. Trapping of Molecular Excitons by Impurities. High Energy Chem 54, 393–402 (2020). https://doi.org/10.1134/S0018143920060028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143920060028

Keywords:

Navigation