Skip to main content
Log in

Influence of the Geometrical Shape of a Prominence and Structure of the Coronal Magnetic Field on the Probability of Eruption, Flare Development, and Coronal Mass Ejection

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The equilibrium conditions of a magnetic flux rope containing a prominence depend on the properties of the surrounding magnetic field of the corona and geometry of the flux rope itself. The eruption of a prominence is usually associated with a loss of stability in the external field upon reaching a height above which the field decay index exceeds the critical value for eruptive instability development. For flux ropes with an axis in the form of a straight line or a circle, the critical value of the field decay index is 1–1.5. By extrapolating the magnetic field in the corona from field measurements in the photosphere, it would be possible to predict the probability of eruption of a particular prominence. However, taking into account the fact that the ends of the magnetic flux rope are rooted in the photosphere and remain fixed because they are frozen in the photospheric plasma, significantly affects the critical value of the index and complicates the forecasting problem. If the magnetic flux rope retains the shape of a torus segment in its evolution, then the critical value of the field decay index for its vertex depends on what part of the torus it constitutes, being minimal for approximately half the torus and having a value significantly less than unity. How the eruption of a flux rope will develop after loss of equilibrium also depends on what part of the complete torus it constitutes at the time of onset of eruption. Shorter flux ropes are accelerated very energetically, but briefly, generating stronger electric induction fields that trigger flare processes. However, the terminal velocity that a short flux rope can achieve during acceleration is less than that of longer ropes that accelerate less intensely but for a longer time. The induction effects of the latter are less pronounced, so that they are capable of producing only weak flarelike manifestations. Thus, the eruption of a short prominence, which has gained a relatively low velocity, can be stopped at a certain height in the corona without generating a coronal mass ejection, but such a “failed eruption” contributes to the development of flare phenomena. Conversely, eruptions of long prominences more often lead to coronal mass ejections and weak flare manifestations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Aggarwal, A., Schanche, N., Reeves, K.K., Kempton, D., and Angryk, R., Prediction of solar eruptions using filament metadata, Astrophys. J. Suppl. Ser., 2018, vol. 236, p. 15.

    Article  ADS  Google Scholar 

  2. Ahmed, O.W., Qahwaji, R., Colak, T., Higgins, P.A., Gallagher, P.T., and Bloomfield, D.S., Solar flare prediction using advanced feature extraction, machine learning, and feature selection, Sol. Phys., 2013, vol. 283, pp. 157–175.

    Article  ADS  Google Scholar 

  3. Barnes, G. and Leka, K.D., Evaluating the performance of solar flare forecasting methods, Astrophys. J., 2008, vol. 688, pp. L107–L110.

    Article  ADS  CAS  Google Scholar 

  4. Bateman, G., MHD Instabilities, Cambridge, Mass: Massachusetts Institute of Technology, 1978.

    Google Scholar 

  5. Borgazzi, A., Lara, A., Echer, E., and Alves, M.A., Dynamics of coronal mass ejections in the interplanetary medium, Astron. Astrophys., 2009, vol. 498, pp. 885–889.

    Article  ADS  Google Scholar 

  6. Carmichael, H., A process for flares, in The Physics of Solar Flares: Proceedings of the AAS NASA Symposium Held 28–30 October, 1963 at the Goddard Space Flight Center, Greenbelt, Md., SP-50 of NASA Special Publications, Hess, W.N., Ed., Washington: NASA Scientific and Technical Information Division, 1964, pp. 451–456.

  7. Chen, J., Effects of toroidal forces in current loops embedded in a background plasma, Astrophys. J., 1989, vol. 338, pp. 453–470.

    Article  ADS  MathSciNet  Google Scholar 

  8. d’Azambuja, M. and d’Azambuja, L., Forme spatiale et caractères généraux des protubérances quiescentes, in Annales de l’Observatoire de Paris, section d’astrophysique, a Meudon, Paris: Gauthier-Villars, 1948, vol. 6, part 7, pp. 23–45.

  9. Démoulin, P. and Aulanier, G., Criteria for flux rope eruption: Non-equilibrium versus torus instability, Astrophys. J., 2010, vol. 718, pp. 1388–1399.

    Article  ADS  Google Scholar 

  10. Filippov, B.P., Method for the determination of the height of a solar filament, Geomagn. Aeron. (Engl. Transl.), 2016, vol. 56, no. 1, pp. 1–7.

  11. Filippov, B., Difference of source regions between fast and slow coronal mass ejections, Publ. Astron. Soc. Aust., 2019, vol. 36, p. e022.

    Article  ADS  Google Scholar 

  12. Filippov, B., Failed prominence eruptions near 24 cycle maximum, Mon. Not. R. Astron. Soc., 2020, vol. 494, pp. 2166–2177.

    Article  ADS  CAS  Google Scholar 

  13. Filippov, B., Critical decay index for eruptions of 'short' filaments, Mon. Not. R. Astron. Soc., 2021a, vol. 503, pp. 3926–3930.

    Article  ADS  Google Scholar 

  14. Filippov, B., Mass of prominences experiencing failed eruptions, Publ. Astron. Soc. Aust., 2021b, vol. 38, p. e018.

    Article  ADS  Google Scholar 

  15. Filippov, B.P., Dependence of the occurrence of coronal mass ejections on the initial length of the eruptive prominence, Geomagn. Aeron. (Engl. Transl.), 2022b, vol. 62, no. 3, pp. 151–158.

  16. Filippov, B., Dependence of the eruptive filaments dynamics on their length, Mon. Not. R. Astron. Soc., 2022a, vol. 509, pp. 5713–5720.

    Article  ADS  Google Scholar 

  17. Filippov, B.P. and Den, O.G., A critical height of quiescent prominences before eruption, J. Geophys. Res., 2001, vol. 106, pp. 25177–25184.

    Article  ADS  Google Scholar 

  18. Filippov, B. and Zagnetko, A., Prominence height shows the proximity of an ejection, J. Atmos. Sol.-Terr. Phys., 2008, vol. 70, pp. 614–620.

    Article  ADS  Google Scholar 

  19. Florios, K., Kontogiannis, I., Park, S.-H., Guerra, J.A., Benvenuto, B., Bloomfield, D.S., and Georgoulis, M.G., Forecasting solar flares using magnetogram-based predictors and machine learning, Sol. Phys., 2018, vol. 293, p. 28.

    Article  ADS  Google Scholar 

  20. Forbes, T.G., A review on the genesis of coronal mass ejections, J. Geophys. Res., 2000, vol. 105, pp. 23 153–23 166.

    Article  ADS  Google Scholar 

  21. Georgoulis, M.K., On our ability to predict major solar flares, in The Sun: New Challenges, Astrophysics and Space Science Proceedings, Obridko, V.N., Georgieva, K., and Nagovitsyn, Y.A., Eds., Berlin–Heidelberg: Springer, 2012, pp. 93–104.

  22. Gopalswamy, N., Shimojo, M., Yashiro, S., and Howard, R.A., Prominence eruptions and coronal mass ejection: A statistical study using microwave observations, Astrophys. J., 2003, vol. 586, pp. 562–578.

    Article  ADS  Google Scholar 

  23. Gosling, J.T., The solar flare myth, J. Geophys. Res., 1993, vol. 98, pp. 18 937–18 949.

    Article  ADS  Google Scholar 

  24. Hirayama, T., Theoretical model of flares and prominences. I: Evaporating flare model, Sol. Phys., 1974, vol. 34, pp. 323–338.

    Article  ADS  Google Scholar 

  25. Ishkov, V.N., The short-term forecast of solar geoeffective flare events, in Solar Variability as an Input to the Earth’s Environment, International Solar Cycle Studies (ISCS) Symposium, 23–28 June 2003, Tatranská Lomnica, Slovak Republic, ESA SP-535, Wilson, A., Ed., Noordwijk: ESA Publications Division, 2003, pp. 559–560.

  26. Jonas, E., Bobra, M., Shankar, V., Hoeksema, J.T., and Recht, B., Flare prediction using photospheric and coronal image data, Sol. Phys., 2018, vol. 293, p. 48.

    Article  ADS  Google Scholar 

  27. Kliem, B. and Török, T., Torus instability, Phys. Rev. Lett., 2006, vol. 96, no. 25, p. 255002.

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Kopp, R.A. and Pneuman, G.W., Magnetic reconnection in the corona and the loop prominence phenomenon, Sol. Phys., 1976, vol. 50, pp. 85–98.

    Article  ADS  CAS  Google Scholar 

  29. Kuperus, M. and Raadu, M.A., The support of prominences formed in neutral sheets, Astron. Astrophys., 1974, vol. 31, pp. 189–193.

    ADS  Google Scholar 

  30. Lemmon, J.J., Forecasting flares from inferred magnetic fields, in Solar Activity Observations and Predictions, Progress in Astronautics and Aeronautics, McIntosh, P.S. and Dryer, M., Eds., Cambridge, Mass.: MIT Press, 1972, vol. 30, pp. 421–428.

  31. Martin, S.F. and Ramsey, H.E., Early recognition of major solar flares in H-alpha, in Solar Activity Observations and Predictions, Progress in Astronautics and Aeronautics, McIntosh, P.S. and Dryer, M., Eds., Cambridge, Mass.: MIT Press, 1972, vol. 30, pp. 371–387.

  32. McCauley, P.I., Su, Y.N., Schanche, N., Evans, K.E., Su, C., McKillop, S., and Reeves, K.K., Prominence and filament eruptions observed by the solar dynamics observatory: Statistical properties, kinematics, and online catalog, Sol. Phys., 2015, vol. 290, pp. 1703–1740.

    Article  ADS  Google Scholar 

  33. Nishizuka, N., Sugiura, K., Kubo, Y., Den, M., Watari, S., and Ishii, M., Solar flare prediction model with three machine-learning algorithms using ultraviolet brightening and vector magnetograms, Astrophys. J., 2017, vol. 835, p. 156.

    Article  ADS  Google Scholar 

  34. Osovets, S.M., Plasma loop in the electromagnetic field, in Fizika plazmy i problema upravlyaemykh termoyadernykh reaktsii (Plasma Physics and the Problem of Controlled Thermonuclear Reaction), Leontovich, M.A., Ed., Moscow: AN SSSR, 1958, vol. 2, pp. 238–241.

  35. Schwenn, R., Space weather: The solar perspective, Living Rev. Sol. Phys., 2006, vol. 3, p. 2.

    Article  ADS  Google Scholar 

  36. Shafranov, V.D., Plasma equilibrium in the magnetic field, in Voprosy teorii plazmy (Problems in the Theory of Plasma), Leontovich, M.A., Ed., Moscow: Gosatomizdat, 1963, vol. 2, pp. 92–131.

  37. Sinha, S., Srivastava, N., and Nandy, D., Solar filament eruptions as precursors to flare-CME events: Establishing the temporal connection, Astrophys. J., 2019, vol. 880, p. 84.

    Article  ADS  CAS  Google Scholar 

  38. Song, H., Tan, C., Jing, J., Wang, H., Yurchyshyn, V., and Abramenko, V., Statistical assessment of photospheric magnetic features in imminent solar flare predictions, Sol. Phys., 2009, vol. 254, pp. 101–125.

    Article  ADS  Google Scholar 

  39. Sturrock, P.A., Model of the high-energy phase of solar flares, Nature, 1966, vol. 211, pp. 695–697.

    Article  ADS  Google Scholar 

  40. Subramanian, P., Lara, A., and Borgazzi, A., Can solar wind viscous drag account for CME deceleration?, Geophys. Res. Lett., 2012, vol. 39, p. L19107.

    Article  ADS  Google Scholar 

  41. Temmer, M., Space weather: The solar perspective. An update to Schwenn (2006), Living Rev. Sol. Phys., 2014, vol. 18, p. 4.

    Article  ADS  Google Scholar 

  42. Török, T. and Kliem, B., Numerical simulations of fast and slow coronal mass ejections, Astron. Nachr., 2007, vol. 328, pp. 743–746.

    Article  ADS  Google Scholar 

  43. van Tend, W. and Kuperus, M., The development of coronal electric current system in active regions and their relation to filaments and flares, Sol. Phys., 1978, vol. 59, pp. 115–127.

    Article  ADS  Google Scholar 

  44. Vršnak, B., Roša, D., Božić, H., Brajša, R., Ruždjak, V., Schroll, A., and Wöhl, H., Height of tracers and the correction of the measured solar synodic rotation rate: Demonstration of the method, Sol. Phys., 1999, vol. 185, p. 207.

    Article  ADS  Google Scholar 

  45. Yashiro, S., Gopalswamy, N., Akiyama, S., Michalek, G., and Howard, R.A., Visibility of coronal mass ejections as a function of flare location and intensity, J. Geophys. Res., 2005, vol. 110, p. A12S05.

    ADS  Google Scholar 

  46. Zagnetko, A.M., Filippov, B.P., and Den, O.G., Geometry of solar prominences and magnetic fields in the corona, Astron. Rep., 2005, vol. 49, no. 5, pp. 425–430.

    Article  ADS  Google Scholar 

  47. Zaitsev, V.V. and Stepanov, A.V., Prominence activation by increase in electric current, J. Atmos. Sol.-Terr. Phys., 2018, vol. 179, pp. 149–153.

    Article  ADS  Google Scholar 

  48. Zaitsev, V.V., Stepanov, A.V., and Melnikov, A.V., Dynamic model of magnetic flux ropes, Geomagn. Aeron. (Engl. Transl.), 2019, vol. 59, no. 7, pp. 806–809.

  49. Zuccarello, F.P., Seaton, D.B., Filippov, B., Mierla, M., Poedts, S., Rachmeler, L.A., Romano, P., and Zuccarello, F., Erratum: “Observational evidence of torus instability as trigger mechanism for coronal mass ejections: The 2011 August 4 filament eruption” (2014, ApJ, 785, 88), Astrophys. J., 2014, vol. 795, p. 175.

    Article  ADS  Google Scholar 

  50. Zuccarello, F.P., Aulanier, G., and Gilchrist, S., The apparent critical decay index at the onset of solar prominence eruptions, Astrophys. J., 2016, vol. 821, p. L23.

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is thanks personnel of the Big Bear Solar Observatory and Kanzelhoehe Solar Observatory, as well as the scientific groups of the SOHO and SDO projects for access to observational materials. The author is grateful to the reviewers for useful comments.

Funding

This study was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. P. Filippov.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippov, B.P. Influence of the Geometrical Shape of a Prominence and Structure of the Coronal Magnetic Field on the Probability of Eruption, Flare Development, and Coronal Mass Ejection. Geomagn. Aeron. 64, 11–18 (2024). https://doi.org/10.1134/S0016793223600777

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793223600777

Navigation