Skip to main content
Log in

An Empirical Model for Estimating the Velocities and Delays of Interplanetary Coronal Mass Ejections

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The behavior of interplanetary coronal mass ejection velocity is studied as a function of its source heliolongitude (associated solar flare), initial velocity, and ambient solar wind velocity. The modeling is based on data on 364 coronal mass ejections accompanied by flares observed in the SOHO/LASCO coronagraph, which interplanetary counterparts were subsequently recorded near Earth in the period from 1995 to 2021. A model is described that makes it possible to estimate the transit and maximum velocities of the corresponding interplanetary disturbance, as well as the time of its arrival to Earth. The average absolute error in estimating the propagation time of interplanetary coronal mass ejections for the considered 364 events is 11.5 h, and the average relative error is 16.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Belov, A., Shlyk, N., Abunina, M., Abunin, A., and Papaioannou, A., Estimating the transit speed and time of arrival of interplanetary coronal mass ejections using CME and solar flare data, Universe, 2022, vol. 8, no. 6, p. 327. https://doi.org/10.3390/universe8060327

    Article  Google Scholar 

  2. Čalogović, J., Dumbović, M., Vršnak, B., Sudar, D., Martinić, K., Temmer, M., and Veronig, A., Probabilistic Drag-Based Ensemble Model (DBEM) evaluation for heliospheric propagation of CMEs, Sol. Phys., 2021, vol. 296, p. 114. https://doi.org/10.1007/s11207-021-01859-5

    Article  Google Scholar 

  3. Cane, H.V., Richardson, I.G., and St. Cyr, O.C., Coronal mass ejections, interplanetary ejecta and geomagnetic storms, Geophys. Res. Lett., 2000, vol. 27, no. 21, pp. 3591–3594.

    Article  Google Scholar 

  4. Davies, J.A., Harrison, R.A., Perry, C.H., et al., A self-similar expansion model for use in solar wind transient propagation studies, Astrophys. J., 2012, vol. 750, no. 1, p. 23. https://doi.org/10.1088/0004-637X/750/1/23

    Article  Google Scholar 

  5. Feng, X., Yang, L., Xiang, C., Wu, S.T., Zhou, Y., and Zhong, D., Three-dimensional solar wind modeling from the Sun to Earth by a SIP-CESE MHD model with a six-component grid, Astrophys. J., 2010, vol. 723, no. 1, pp. 300–319. https://doi.org/10.1088/0004-637X/723/1/300

    Article  Google Scholar 

  6. Gopalswamy, N., Solar connections of geoeffective magnetic structures, J. Atmos. Sol.-Terr. Phys., 2008, vol. 70, pp. 2078–2100. https://doi.org/10.1016/j.jastp.2008.06.010

    Article  Google Scholar 

  7. Gopalswamy, N., Lara, A., Lepping, R.P., Kaiser, M.L., Berdichevsky, D., and St. Cyr, O.C., Interplanetary acceleration of coronal mass ejections, Geophys. Res. Lett., 2000, vol. 27, no. 2, pp. 145–148. https://doi.org/10.1029/1999GL003639

    Article  Google Scholar 

  8. Gopalswamy, N., Yashiro, S., Michalek, G., Xie, H., Mäkelä, P., Vourlidas, A., and Howard, R.A., A catalog of halo coronal mass ejections from SOHO, Sun Geosphere, 2010, vol. 5, no. 1, pp. 7–16.

    Google Scholar 

  9. Gosling, J.T., Hildner, E., MacQueen, R.M., Munro, R.H., Poland, A.I., and Ross, C.L., The speeds of coronal mass ejection events, Sol. Phys., 1976, vol. 48, pp. 389–397. https://doi.org/10.1007/BF00152004

    Article  Google Scholar 

  10. Gosling, J.T., Bame, S.J., McComas, D.J., and Phillips, J.L., Coronal mass ejections and large geomagnetic storms, Geophys. Res. Lett., 1990, vol. 17, no. 7, pp. 901–904. https://doi.org/10.1029/GL017i007p00901

    Article  Google Scholar 

  11. Hess, P. and Zhang, J., A study of the Earth-affecting CMEs of solar cycle 24, Sol. Phys., 2017, vol. 292, p. 80. https://doi.org/10.1007/s11207-017-1099-y

    Article  Google Scholar 

  12. Lamy, P.L., Floyd, O., Boclet, B., Wojak, J., Gilardy, H., and Barlyaeva, T., Coronal mass ejections over solar cycles 23 and 24, Space Sci. Rev., 2019, vol. 215, p. 39. https://doi.org/10.1007/s11214-019-0605-y

    Article  Google Scholar 

  13. Lindsay, G.M., Luhmann, J.G., Russell, C.T., and Gosling, J.T., Relationships between coronal mass ejection speeds from coronagraph images and interplanetary characteristics of associated interplanetary coronal mass ejections, J. Geophys. Res., 1999, vol. 104, no. A6, pp. 12515–12523.

    Article  Google Scholar 

  14. Lugaz, N., Temmer, M., Wang, Y., and Farrugia, C.J., The interaction of successive coronal mass ejections: A review, Sol. Phys., 2017, vol. 292, p. 64. https://doi.org/10.1007/s11207-017-1091-6

    Article  Google Scholar 

  15. Michalek, G., Gopalswamy, N., and Yashiro, S., A new method for estimating widths, velocities, and source location of halo coronal mass ejections, Astrophys. J., 2003, vol. 584, pp. 472–478. https://doi.org/10.1086/345526

    Article  Google Scholar 

  16. Odstrcil, D., Modeling 3-D solar wind structure, Adv. Space Res., 2003, vol. 32, no. 4, pp. 497–506. https://doi.org/10.1016/S0273-1177(03)00332-6

    Article  Google Scholar 

  17. Paouris, E. and Mavromichalaki, H., Effective Acceleration Model for the arrival time of interplanetary shocks driven by coronal mass ejections, Sol. Phys., 2017, vol. 292, p. 180. https://doi.org/10.1007/s11207-017-1212-2

    Article  Google Scholar 

  18. Paouris, E., Vourlidas, A., Papaioannou, A., and Anastasiadis, A., Assessing the projection correction of coronal mass ejection speeds on time-of-arrival prediction performance using the Effective Acceleration Model, Space Weather, 2021, vol. 19, no. 2, p. e2020SW002617. https://doi.org/10.1029/2020SW002617

  19. Richardson, I.G. and Cane, H.V., Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996–2009): Catalog and summary of properties, Sol. Phys., 2010, vol. 264, pp. 189–237. https://doi.org/10.1007/s11207-010-9568-6

    Article  Google Scholar 

  20. Riley, P., Mays, M.L., Andries, J., et al., Forecasting the arrival time of coronal mass ejections: analysis of the CCMC CME scoreboard, Space Weather, 2018, vol. 16, pp. 1245–1260. https://doi.org/10.1029/2018SW001962

    Article  Google Scholar 

  21. Shen, F., Feng, X., Wu, S.T., and Xiang, C., Three-dimensional MHD simulation of CMEs in three-dimensional background solar wind with the self-consistent structure on the source surface as input: numerical simulation of the January 1997 Sun–Earth connection event, J. Geophys. Res., 2007, vol. 112, p. A06109. https://doi.org/10.1029/2006JA012164

    Article  Google Scholar 

  22. Shlyk, N.S., Belov, A.V., Abunina, M.A., Abunin, A.A., Oleneva, V.A., and Yanke, V.G., Influence of interacting solar wind disturbances on the variations in galactic cosmic rays, Geomagn. Aeron. (Engl. Transl.), 2021, vol. 61, no. 6, pp. 792–800. https://doi.org/10.1134/S0016793221060128

  23. Shugay, Y., Kalegaev, V., Kaportseva, K., Slemzin, V., Rodkin, D., and Eremeev, V., Modeling of solar wind disturbances associated with coronal mass ejections and verification of the forecast results, Universe, 2022, vol. 8, no. 11, p. 565. https://doi.org/10.3390/universe8110565

    Article  Google Scholar 

  24. Temmer, M., Preiss, S., and Veronig, A.M., CME projection effects studied with STEREO/COR and SOHO/LASCO, Sol. Phys., 2009, vol. 256, pp. 183–199. https://doi.org/10.1007/s11207-009-9336-7

    Article  Google Scholar 

  25. Thernisien, A., Implementation of the Graduated Cylindrical Shell model for the three-dimensional reconstruction of coronal mass ejections, Astrophys. J., Suppl. Ser., 2011, vol. 194, no. 2, p. 33. https://doi.org/10.1088/0067-0049/194/2/33

    Article  Google Scholar 

  26. Tsurutani, B.T. and Gonzalez, W.D., The interplanetary causes of magnetic storms: A review, in Magnetic Storms, Tsurutani, B.T., Gonzalez, W.D., Kamide, Y., and Arballo, J.K., Eds., Washington, DC: Am. Geophys. Union, 1997, vol. 98, pp. 77–89. https://doi.org/10.1029/GM098p0077

  27. Vršnak, B., Sudar, D., Ruždjak, D., and Žic, T., Projection effects in coronal mass ejections, Astron. Astrophys., 2007, vol. 469, pp. 339–346. https://doi.org/10.1051/0004-6361:20077175

    Article  Google Scholar 

  28. Vršnak, B., Žic, T., Vrbanec, D., et al., Propagation of interplanetary coronal mass ejections: The drag-based model, Sol. Phys., 2013, vol. 28, pp. 295–315. https://doi.org/10.1007/s11207-012-0035-4

    Article  Google Scholar 

  29. Wang, Y.M., Yee, P.Z., Wang, S., Zhou, G.P., and Wang, J., A statistical study on the geoeffectiveness of Earth-directed coronal mass ejections from march 1997 to December 2000, J. Geophys. Res.: Space, 2002, vol. 107, no. A11, p. 1340. https://doi.org/10.1029/2002JA009244

    Article  Google Scholar 

  30. Webb, D.F. and Howard, T.A., Coronal mass ejections: Observations, Living Rev. Sol. Phys., 2012, vol. 9, p. 3. https://doi.org/10.12942/lrsp-2012-3

    Article  Google Scholar 

  31. Yashiro, S., Gopalswamy, N., Akiyama, S., Michalek, G., and Howard, R.A., Visibility of coronal mass ejections as a function of flare location and intensity, J. Geophys. Res., 2005, vol. 110, p. A12S05. https://doi.org/10.1029/2005JA011151

    Article  Google Scholar 

  32. Zhang, J., Dere, K.P., Howard, R.A., and Bothmer, V., Identification of solar sources of major geomagnetic storms between 1996 and 2000, Astrophys. J., 2003, vol. 582, pp. 520–533. https://doi.org/10.1086/344611

    Article  Google Scholar 

  33. Zhang, J., Temmer, M., Gopalswamy, N., et al., Earth-affecting solar transients: A review of progresses in solar cycle 24, Prog. Earth Planet. Sci., 2021, vol. 8, p. 56. https://doi.org/10.1186/s40645-021-00426-7

    Article  Google Scholar 

Download references

Funding

Shlyk N.S., Belov A.V., Abunina M.A. and Abunin A.A. supported by the Russian Science Foundation, grant no. 20-72-10 023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Shlyk.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shlyk, N.S., Belov, A.V., Abunina, M.A. et al. An Empirical Model for Estimating the Velocities and Delays of Interplanetary Coronal Mass Ejections. Geomagn. Aeron. 63, 564–573 (2023). https://doi.org/10.1134/S0016793223600443

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793223600443

Navigation