Skip to main content
Log in

Magnetic Reconnection Rates in a Confined X Class Flare

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

We studied the process of energy release of the confined X2.2 flare, which occurred September 6, 2017 in the active region NOAA 12673. The magnetic reconnection rate and reconnection fluxes were obtained from chromospheric data (SDO/AIA 1600 Å) and magnetograms of the photospheric field (SDO/HMI). The time profiles of the magnetic reconnection rate and microwave emission obtained by the radioastronomical diagnostic complex of solar activity of the Crimean Astrophysical Observatory, Russian Academy of Sciences (KRIM) demonstrate good agreement. This suggests that the magnetic reconnection rate plays an important part in the energy release in flares and in the acceleration of nonthermal electrons with formation of microwave emission. The morphology of the flare radio source in low-frequency emission has been studied. The low-frequency slope of the flux density spectrum is 1.2, which indicates a spatial inhomogeneity of the source. The area of such a source increases with a decrease in frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Alexander, D. and Coyner, A.J., Temporal and spatial relationships between ultraviolet and hard X-ray emission in solar flares, Astrophys. J., 2006, vol. 640, pp. 505–515.

    Article  Google Scholar 

  2. Dulk, G.A., Radio emission from the Sun and stars, Annu. Rev. Astron. Astrophys., 1985, vol. 23, pp. 169–224.

    Article  Google Scholar 

  3. Dulk, G., Melrose, D., and White, S., The gyrosynchrotron emission from quasi-thermal electrons and applications to solar flares, Astrophys. J., 1979, vol. 234, pp. 1137–1147.

    Article  Google Scholar 

  4. Fleishman, G.D., Loukitcheva, M.A., Kopnina, V.Y., et al., The coronal volume of energetic particles in solar flares as revealed by microwave imaging, Astrophys. J., 2018, vol. 867, no. 1, p. 81.

    Article  Google Scholar 

  5. Forbes, T.G. and Priest, E.R., Numerical simulation of reconnection in an emerging magnetic flux region, Sol. Phys., 1984, vol. 94, no. 2, pp. 315–340.

    Article  Google Scholar 

  6. Forbes, T.G., Linker, J.A., Chen, J., et al., CME theory and models, Space Sci. Rev., 2006, vol. 123, nos. 1–3, pp. 251–302.

    Article  Google Scholar 

  7. Guidice, D.A., Cliver, E.W., Barron, W.R., and Kahler, S., The air force RSTN system, Bull. Am. Astron. Soc., 1981, vol. 13, p. 553.

    Google Scholar 

  8. Hoeksema, J.T., Liu, Y., Hayashi, K., et al., The Helioseismic and Magnetic Imager (HMI) vector magnetic field pipeline: Overview and performance, Sol. Phys., 2014, vol. 289, pp. 3483–3530.

    Article  Google Scholar 

  9. Hudson, H.S., Solar flares, microflares, nanoflares, and coronal heating, Sol. Phys., 1991, vol. 133, no. 2, pp. 357–369.

    Article  Google Scholar 

  10. Joshi, N.C., Nishizuka, N., Filippov, B., et al., Flux rope breaking and formation of a rotating blowout jet, Mon. Not. R. Astron. Soc., 2018, vol. 47, no. 1, pp. 1286–1298.

    Article  Google Scholar 

  11. Kazachenko, M.D., Lynch, B.J., Welsch, B.T., and Sun, X., A database of flare ribbon properties from the solar dynamics observatory. I. Reconnection flux, Astrophys. J., 2017, vol. 845, p. 49.

    Article  Google Scholar 

  12. Klein, K.-L. and Trottet, G., Gyrosynchrotron radiation from a source with spatially varying field and density, Astron. Astrophys., 1984, vol. 141, no. 1, pp. 67–76.

    Google Scholar 

  13. Lau, Y.-T. and Finn, J.M., Three-dimensional kinematic reconnection in the presence of field nulls and closed field lines, Astrophys. J., 1990, vol. 350, pp. 672–691.

    Article  Google Scholar 

  14. Lemen, J.R., Title, A.M., Akin, D.J., et al., The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO), Sol. Phys., 2012, vol. 275, nos. 1–2, pp. 17–40.

    Article  Google Scholar 

  15. Miklenic, C.H., Veronig, A.M., Vršnak, B., and Hanslmeier, A., Reconnection and energy release rates in a two-ribbon flare, Astron. Astrophys., 2007, vol. 461, pp. 697–706.

    Article  Google Scholar 

  16. Qiu, J. and Yurchyshyn, V.B., Magnetic reconnection flux and coronal mass ejection velocity, Astrophys. J., 2005, vol. 634, pp. L121–L124.

    Article  Google Scholar 

  17. Qiu, J., Wang, H., Cheng, C.Z., and Gary, D.E., Magnetic reconnection and mass acceleration in flare-coronal mass ejection events, Astrophys. J., 2004, vol. 604, pp. 900–905.

    Article  Google Scholar 

  18. Reid, H.A.S., Vilmer, N., Aulanier, G., and Pariat, E., X‑ray and ultraviolet investigation into the magnetic connectivity of a solar flare, Astron. Astrophys., 2012, vol. 547, p. A52.

    Article  Google Scholar 

  19. Schou, J., Scherrer, P.H., Bush, R.I., et al., Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO), Sol. Phys., 2012, vol. 275, pp. 229–259.

    Article  Google Scholar 

  20. Shaik, S.B. and Gary, D.E., Implications of flat optically thick microwave spectra in solar flares for source size and morphology, Astrophys. J., 2021, vol. 919, no. 1, p. 44.

    Article  Google Scholar 

  21. Stähli, M., Gary, D.E., and Hurford, G.J., High resolution microwave spectra of solar bursts, Sol. Phys., 1989, vol. 120, no. 2, pp. 351–368.

    Article  Google Scholar 

  22. Sun, X., On the coordinate system of space-weather HMI active region patches (SHARPs): A technical note, 2013.https://arxiv.org/pdf/1309.2392.

  23. Sun, X., Hoeksema, J.T., Liu, Y., et al., Hot spine loops and the nature of a late-phase solar flare, Astrophys. J., 2013, vol. 778, p. 139.

    Article  Google Scholar 

  24. Veronig, A.M. and Polanec, W., Magnetic reconnection rates and energy release in a confined X-class flare, Sol. Phys., 2015, vol. 290, no. 10, pp. 2923–2942.

    Article  Google Scholar 

  25. Volvach, A.E. and Yakubovskaya, I.V., Diagnostic complex of solar activity based on small radiotelescopes of the Sun service KRIM, Astron. Astrophys. Trans., 2019, vol. 31, no. 3, pp. 389–398.

    Google Scholar 

Download references

5. ACKNOWLEDGMENTS

SDO is a project of NASA’s Living With a Star Program. The SDO/AIA and SDO/HMI data were presented by the Joint Science Operation Center (JSOC). We are grateful for the free access to Air Force RSTN network data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Gopasyuk.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopasyuk, O.S., Volvach, A.E. & Yakubovskaya, I.V. Magnetic Reconnection Rates in a Confined X Class Flare. Geomagn. Aeron. 62, 888–894 (2022). https://doi.org/10.1134/S0016793222070106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793222070106

Navigation