Skip to main content
Log in

Dependence of the Local Index of Annual Asymmetry for NmF2 on Solar Activity

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The dependence of the local annual asymmetry index AI on solar activity has been analyzed based on daily data on the noon values of the F2-layer maximum electron density, NmF2, at the Boulder and Hobart ionospheric stations for 1963–2002. The AI index characterizes the relative difference in the total electron density NmF2 in January and July for a given pair of stations. The weighted-average index of geomagnetic activity ap(τ) at τ = 0.8 was used for the analysis. Low (ap(τ) < 9) and moderate (9 < ap(τ) < 20) geomagnetic activities were identified. It was found for the first time that for low geomagnetic activity, the AI index increases from 0.08 during low solar activity to 0.11–0.12 during moderately high and high solar activity. The AI index for moderate geomagnetic activity is higher (by ΔAI = 0.04–0.05) than that for low geomagnetic activity, which is almost independent of the solar activity level. The AI index for NmF2 median values increases from 0.08 during low solar activity to 0.15–0.16 during high solar activity, which indicates the important role of geomagnetic activity in the dependence of this index on solar activity. A qualitative interpretation of these patterns is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Araujo-Pradere, E.A., Fuller-Rowell, T.J., and Codrescu, M.V., Storm: An empirical storm-time ionospheric correction model. 1. Model description, Radio Sci., vol. 37, no. 5, pp. 3-1–3-12. https://doi.org/10.1029/2001RS002467

  2. Brown, S., Bilitza, D., and Yiğit, E., Ionosonde-based indices for improved representation of solar cycle variation in the international reference ionosphere model, J. Atmos. Sol.-Terr. Phys., 2018a, vol. 171, pp. 137–146.

    Article  Google Scholar 

  3. Brown, S., Bilitza, D., and Yiğit, E., Improvements to predictions of the ionospheric annual anomaly by the International Reference Ionosphere model, Ann. Geophys. Discuss., 2018b, https://doi.org/10.5194/angeo-2018-97

  4. Bryunelli, B.E. and Namgaladze, A.A., Fizika ionosfery (Ionospheric Physics), Moscow: Nauka, 1988.

  5. Dang, T., Wang, W., Burns, A., Dou, X., Wan, W., and Lei, J., Simulations of the ionospheric annual asymmetry: Sun–Earth distance effect, J. Geophys. Res.: Space, 2017, vol. 122, pp. 6727–6736.

    Article  Google Scholar 

  6. Deminov, M.G. and Deminova, G.F., Geomagnetic activity that corresponds to the median of the F2-layer critical frequency at various latitudes, Geomagn. Aeron. (Engl. Transl.), 2016, vol. 56, no. 5, pp. 572–576.

  7. Deminov, M.G. and Deminova, G.F., Properties of the ionosphere during an extreme storm, Cosmic Res., 2019, vol. 57, no. 6, pp. 451–458.

    Article  Google Scholar 

  8. Deminov, M.G., Zherebtsov, G.A., Pirog, O.M., and Shubin, V.N., Regular changes in the critical frequency of the F2 layer of the quiet midlatitude ionosphere, Geomagn. Aeron. (Engl. Transl.), 2009, vol. 49, no. 3, pp. 374–380.

  9. Deminov, M.G., Deminova, G.F., Zherebtsov, G.A., and Polekh, N.M., Properties of the F2-layer maximum density variability over Irkutsk under different levels of the solar and geomagnetic activity), Soln.-Zemnaya Fiz., 2015, vol. 1, no. 1, pp. 56–62.

    Article  Google Scholar 

  10. Deminov, M.G., Deminova, G.F., Depueva, A.Kh., and Depuev, V.Kh., Dependence of the F2-layer critical frequency median at midlatitudes on geomagnetic activity, J. Sol. Terr.-Phys., 2017, vol. 3, no. 4, pp. 67–73.

    Google Scholar 

  11. Du, Z.L., The correlation between solar and geomagnetic activity part 3: An integral response model, Ann. Geophys., 2011, vol. 29, no. 6, pp. 1005–1018.

    Article  Google Scholar 

  12. Feynman, J., Geomagnetic and solar wind cycles, 1900–1975, J. Geophys. Res., 1982, vol. 87, no. A8, pp. 6153–6162.

    Article  Google Scholar 

  13. Fuller-Rowell, T.J., Araujo-Pradere, E., and Codrescu, M.V., An empirical ionospheric storm-time correction model, Adv. Space Res., 2000, vol. 25, pp. 139–146.

    Article  Google Scholar 

  14. Gulyaeva, T.L., Arikan, F., Hernandez-Pajares, M., and Veselovsky, I.S., North–south components of the annual asymmetry in the ionosphere, Radio Sci., 2014, vol. 49, pp. 485–496.

    Article  Google Scholar 

  15. Hocke, K. and Schlegel, K., A review of atmospheric gravity waves and traveling ionospheric disturbances: 1982–1985, Ann. Geophys., 1996, vol. 14, no. 9, pp. 917–940.

    Google Scholar 

  16. Hunsucker, K., Atmospheric gravity waves generated in the high-latitude ionosphere: A review, Rev. Geophys.: Space Phys., 1982, vol. 20, pp. 293–315.

    Article  Google Scholar 

  17. Kutiev, I. and Muhtarov, P., Empirical modeling of global ionospheric foF2 response to geomagnetic activity, J. Geophys. Res., 2003, vol. 108, no. A1, 1021. https://doi.org/10.1029/2001JA009134

    Article  Google Scholar 

  18. Laundal, K.M., Cnossen, I., Milan, S.E., et al., North–south asymmetries in Earth’s magnetic field. Effects on high-latitude geospace, Space Sci. Rev., 2017, vol. 206, pp. 225–257.

    Article  Google Scholar 

  19. Lei, J., Liu, L., Wan, W., and Zhang, S.-R., Variations of electron density based on long-term incoherent scatter radar and ionosonde measurements over Millstone Hill, Radio Sci., 2005, vol. 40, RS2008. https://doi.org/10.1029/2004RS003106

    Article  Google Scholar 

  20. Lei, J., Dou, X., Burns, A., Wang, W., Luan, X., Zeng, Z., and Xu, J., Annual asymmetry in thermospheric density: Observations and simulations, J. Geophys. Res.: Space, 2013, vol. 118, pp. 2503–2510.

    Article  Google Scholar 

  21. Lei, J., Wang, W., Burns, A.G., Luan, X., and Dou, X., Can atomic oxygen production explain the ionospheric annual asymmetry?, J. Geophys. Res.: Space, 2016, vol. 121, pp. 7238–7244.

    Article  Google Scholar 

  22. Liu, L., Wan, W., Ning, B., et al., Solar activity variations of the ionospheric peak electron density, J. Geophys. Res., 2006, vol. 111, A08304. https://doi.org/10.1029/2006JA011598

    Article  Google Scholar 

  23. Ma, R., Xu, J., Wang, W., and Yuan, W., Seasonal and latitudinal differences of the saturation effect between ionospheric NmF2 and solar activity indices, J. Geophys. Res., 2009, vol. 114, A10303. https://doi.org/10.1029/2009JA014353

    Article  Google Scholar 

  24. Mendillo, M., Huang, C.L., Pi, X., Rishbeth, H., and Meier, R., The global ionospheric asymmetry in total electron content, J. Atmos. Sol.-Terr. Phys., 2005, no. 15, pp. 1377–1387.

  25. Mikhailov, A.V. and Perrone, L., The annual asymmetry in the F2 layer during deep solar minimum (2008–2009): December anomaly, J. Geophys. Res.: Space, 2015, vol. 120, no. 2, pp. 1341–1354.

    Article  Google Scholar 

  26. Newell, P.T., Greenwald, R.A., and Ruohoniemi, J.M., The role of the ionosphere in aurora and space weather, Rev. Geophys., 2001, vol. 39, no. 2, pp. 137–149.

    Article  Google Scholar 

  27. Newell, P.T., Sotirelis, T., and Wing, S., Seasonal variations in diffuse, monoenergetic, and broadband aurora, J. Geophys. Res., 2010, vol. 115, A03216. https://doi.org/10.1029/2009JA014805

    Article  Google Scholar 

  28. Picone, J.M., Hedin, A.E., Drob, D.P., and Aikin, A.C., NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res., 2002, vol. 107, no. A12, 1468. https://doi.org/10.1029/2002JA009430

    Article  Google Scholar 

  29. Pietrella, M., A short-term ionospheric forecasting empirical regional model (IFERM) to predict the critical frequency of the F2 layer during moderate, disturbed, and very disturbed geomagnetic conditions over the European area, Ann. Geophys., 2012, vol. 30, no. 2, pp. 343–355.

    Article  Google Scholar 

  30. Ramachandran, K.M. and Tsokos, C.P., Mathematical Statistics with Applications, Oxford: Elsevier, 2009.

    Google Scholar 

  31. Richards, P.G., Fennelly, J.A., and Torr, D.G., EUVAC: A solar EUV flux model for aeronomic calculations, J. Geophys. Res., 1994, vol. 99, pp. 8981–8992.

    Article  Google Scholar 

  32. Richards, P.G., Woods, T.N., and Peterson, W.K., HEUVAC: A new high resolution solar EUV proxy model, Adv. Space Res., 2006, vol. 37, pp. 315–322.

    Article  Google Scholar 

  33. Rishbeth, H. and Müller-Wodarg, I.C.F., Why is there more ionosphere in January than in July? The annual asymmetry in the F2-layer, Ann. Geophys., 2006, vol. 24, no. 12, pp. 3293–3311.

    Article  Google Scholar 

  34. Sai Gowtam,V. and Tulasi Ram, S., Ionospheric annual anomaly—New insights to the physical mechanisms, J. Geophys. Res.: Space, 2017a, vol. 122, pp. 8816–8830.

    Article  Google Scholar 

  35. Sai Gowtam,V. and Tulasi Ram, S., Ionospheric winter anomaly and annual anomaly observed from Formosat-3/COSMIC radio occultation observations during the ascending phase of solar cycle 24, Adv. Space Res., 2017b, vol. 60, pp. 1585–1593.

    Article  Google Scholar 

  36. Shubin, V.N. and Deminov, M.G., Global dynamic model of critical frequency of the ionospheric F2 Layer, Geomagn. Aeron. (Engl. Transl.), 2019, vol. 59, no. 4, pp. 429–440.

  37. Tanskanen, E.I., Pulkkinen, T.I., Viljanen, A., et al., From space weather toward space climate time scales: Substorm analysis from 1993 to 2008, J. Geophys. Res., 2011, vol. 116, art. ID A00I34. https://doi.org/10.1029/2010JA015788

    Article  Google Scholar 

  38. Wrenn, G.L., Time-weighted accumulations ap(τ) and kp(τ), J. Geophys. Res., 1987, vol. 92, pp. 10125–10129.

    Article  Google Scholar 

  39. Wrenn, G.L. and Rodger, A.S., Geomagnetic modification of the mid-latitude ionosphere—Toward a strategy for the improved forecasting of foF2, Radio Sci., 1989, vol. 24, pp. 99–111.

    Article  Google Scholar 

  40. Yonezawa, T., The solar-activity and latitudinal characteristics of the seasonal, non-seasonal and semi-annual variations in the peak electron densities of the F2-layer at noon and at midnight in middle and low latitudes, J. Atmos. Terr. Phys., 1971, vol. 33, pp. 887–907.

    Article  Google Scholar 

  41. Zeng, Z., Burns, A., Wang, W., Lei, J., Solomon, S., Syndergaard, S., Qian, L., and Kuo, Y.-H., Ionospheric annual asymmetry observed by the COSMIC radio occultation measurements and simulated by the TIEGCM, J. Geophys. Res., 2008, vol. 113, art. ID A07305. https://doi.org/10.1029/2007JA012897

    Article  Google Scholar 

  42. Zhao, B., Wan, W., Liu, L., Mao, T., Ren, Z., Wang, M., and Christensen, A.B., Features of annual and semiannual variations derived from the global ionospheric maps of total electron content, Ann. Geophys., 2007, vol. 25, no. 12, pp. 2513–2527.

    Article  Google Scholar 

Download references

5. ACKNOWLEDGMENTS

The authors are grateful to the World Data Center for Solar-Terrestrial Physics, Great Britain, for the foF2 data from Boulder and Hobart stations and solar activity indices (http://www.ukssdc.ac.uk/wdcc1/) and the World Data Center for Geomagnetism, Japan, for the Ap index data (http://wdc.kugi.kyoto-u.ac.jp/).

Funding

The study was funded by the Russian Foundation for Basic Research as part of the scientific project no. 20-05-00050.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Deminov.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deminov, M.G., Deminova, G.F. Dependence of the Local Index of Annual Asymmetry for NmF2 on Solar Activity. Geomagn. Aeron. 61, 227–233 (2021). https://doi.org/10.1134/S0016793221020055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793221020055

Navigation