Skip to main content
Log in

Semianalytical models of sprite formation from plasma inhomogeneities

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

A spherical plasma inhomogeneity located at mesospheric altitudes in a thundercloud quasi-electrostatic field is considered as a possible cause of sprite formation. A simple semianalytical model of ionization instability in a quasi-electrostatic field, the value of which is larger than the air breakdown value, is developed on the assumption that plasma ball conductivity is controlled by impact ionization and electron attachment to neutrals. After several simplifications, the problem is reduced to a system of ordinary differential equations for the average conductivity and plasma ball radius. The analytical estimates and numerical simulation indicate that the predicted expansion rate and acceleration of the plasma inhomogeneity boundary are close in magnitude to the values observed during high-speed imaging of sprite development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boccippio, D.J., Williams, E.R., Heckman, S.J., Lyons, W.A., Baker, I.T., and Boldi, R., Sprites, ELF transients, and positive ground strokes, Science, 1995, vol. 269, no. 5227, pp. 1088–1091.

    Google Scholar 

  • Cummer, S.A., Jaugey, N., Li, J., Lyons, W.A., Nelson, T.E., and Gerken, E.A., Submillisecond imaging of sprite development and structure, Geophys. Res. Lett., 2006, vol. 33, L04104. doi 10.1029/2005GL024969

    Article  Google Scholar 

  • Evtushenko, A.A. and Mareev, E.A., Simulation of mesospheric- composition disturbances under the action of high-altitude discharges (sprites), Radiophys. Quantum Electron., 2011, vol. 54, no. 2, pp. 111–127.

    Article  Google Scholar 

  • Hiraki, Y. and Fukunishi, H., Theoretical criterion of charge moment change by lightning for initiation of sprites, J. Geophys. Res., 2006, vol. 111, A11305. doi 10.1029/2006JA011729

    Article  Google Scholar 

  • Hu, W., Cummer, S.A., and Lyons, W.A., Testing sprite initiation theory using lightning measurements and modeled electromagnetic fields, J. Geophys. Res., 2007, vol. 112, D13115. doi 10.1029/2006JD007939

    Google Scholar 

  • Kosar, B.C., Liu, N., and Rassoul, H.K., Luminosity and propagation characteristics of sprite streamers initiated from small ionospheric disturbances at subbreakdown conditions, J. Geophys. Res., 2012, vol. 117, A08328. doi 10.1029/2012JA017632

    Article  Google Scholar 

  • Landau, L.D. and Lifshits, E.M., Elektrodinamika sploshnykh sred (Electrodynamics of Continuous Media), Moscow: Nauka, 1982.

    Google Scholar 

  • Li, J. and Cummer, S.A., Measurement of sprite streamer acceleration and deceleration, Geophys. Res. Lett., 2009, vol. 36, L10812. doi 10.1029/2009GL037581

    Article  Google Scholar 

  • Liu, N.Y., Pasko, V.P., Adams, K., Stenbaek-Nielsen, H.C., and McHarg, M.G., Comparison of acceleration, expansion, and brightness of sprite streamers obtained from modeling and high-speed video observations, J. Geophys. Res., 2009, vol. 114, A00E03. doi 10.1029/2008JA013720

    Google Scholar 

  • Luque, A. and Ebert, U., Emergence of sprite streamers from screening-ionization waves in the lower ionosphere, Nat. Geosci., 2009, vol. 2. doi 10.1038/ngeo662

  • Luque, A. and Ebert, U., Sprites in varying air density: Charge conservation, glowing negative trails and changing velocity, Geophys. Res. Lett., 2010, vol. 37, L06806. doi 10.1029/2009GL041982

    Google Scholar 

  • McHarg, M.G., Haaland, R.K., Moudry, D., and Stenbaek-Nielsen, H.C., Altitude–time development of sprites, J. Geophys. Res., 2002, vol. 107, no. A11. doi 10.1029/2001JA000283

  • McHarg, M.G., Stenbaek-Nielsen, H.C., and Kammae, T., Observations of streamer formation in sprites, Geophys. Res. Lett., 2007, vol. 34, L08804. doi 10.1029/2006GL027854

    Article  Google Scholar 

  • Pasko, V.P., Qin, J., and Celestin, S., Toward better understanding of sprite streamers: Initiation, morphology, and polarity asymmetry, Surv. Geophys., 2013, vol. 34, no. 6, pp. 797–830. doi 10.1007/s10712-013-9246-y

    Article  Google Scholar 

  • Qin, J., Celestin, S., and Pasko, V.P., On the inception of streamers from sprite halo events produced by lightning discharges with positive and negative polarity, J. Geophys. Res., 2011, vol. 116, A06305. doi 10.1029/2010JA016366

    Google Scholar 

  • Raizer, Yu.P., Fizika gazovogo razryada (Gas Discharge Physics), Moscow: Intellekt, 2009.

    Google Scholar 

  • Raizer, Y.P., Milikh, G.M., and Shneider, M.N., Streamerand leader-like processes in the upper atmosphere: Models of red sprites and blue jets, J. Geophys. Res., 2010, vol. 115, A00E42. doi 10.1029/2009JA014645

    Article  Google Scholar 

  • Stanley, M., Krehbiel, P., Brook, M., Moore, C., Rison, W., and Abrahams, B., High speed video of initial sprite development, Geophys. Res. Lett., 1999, vol. 26, no. 20, pp. 3201–3204.

    Article  Google Scholar 

  • Surkov, V.V. and Hayakawa, M., Underlying mechanisms of transient luminous events: A review, Ann. Geophys., 2012, vol. 30, no. 8, pp. 1185–2012. doi 10.5194/angeo- 30-1185-2012

    Article  Google Scholar 

  • Surkov, V. and Hayakawa, M., Ultra and Extremely Low Frequency Electromagnetic Fields, Springer, 2014.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Surkov.

Additional information

Original Russian Text © V.V. Surkov, M. Hayakawa, 2016, published in Geomagnetizm i Aeronomiya, 2016, Vol. 56, No. 6, pp. 763–771.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surkov, V.V., Hayakawa, M. Semianalytical models of sprite formation from plasma inhomogeneities. Geomagn. Aeron. 56, 724–732 (2016). https://doi.org/10.1134/S0016793216050145

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793216050145

Navigation