Skip to main content
Log in

Geochemistry of High-Phosphorus Zircon from the Upper Riphean Sandstones of the Southern Timan

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—A detailed mineralogical and geochemical study (using the EPMA and SIMS methods) of zircon from sandstones of the Dzhezhim Formation in the South Timan made it possible to establish an anomalously high phosphorus content (up to 10.21 wt % P2O5 according to EPMA data), which correlates with an increased content of other admixture elements, the main of which are Y, REE, Ca, Fe, Al, Ti, Sr, Ba, Th, U. Of particular note is the significant amount of volatile components in zircon (up to 0.49 wt % water and up to 0.26 wt % fluorine, determined by the SIMS method). The total content of admixture elements can exceed 20 wt %, which is a characteristic feature of the composition of zircon exposed to fluid or formed as a result of hydrothermal-metasomatic processes. The main mechanism for the incorporation of admixtures into the zircon composition was xenotime-type heterovalent isomorphism, when the presence of pentavalent phosphorus is compensated by trivalent Y and REE. Isomorphic scheme providing the entry of hydrogen (water) is of subordinate significance. The zircon areas enriched in phosphorus and other trace elements are confined to the grain margin or to the fracture system and fluid-permeable areas. Zircon was likely derived from granitoids, while its transformation (recrystallization and enrichment of local areas, rarely, whole grains) probably occurred during metamorphism and/or hydrothermal process in the rocks of the East European platform basement, which served as one of detrital sources during formation of the Dzhezhim sandstones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. E. A. Belousova, W. L. Griffin, S. Y. O’Reilly, and N. L. Fisher, “Igneous zircon: trace element composition as an indicator of source rock type,” Contrib. Mineral. Petrol. 143 (5), 602–622 (2002).

    Article  Google Scholar 

  2. A. S. Bouvier, T. Ushikubo, N. T. Kita, A. J. Cavosie, R. Kozdon, and J. W. Valley, “Li isotopes and trace elements as a petrogenetic tracer in zircon: insights from Archean TTGs and sanukitoids,” Contrib. Mineral. Petrol. 163 (5), 745–768 (2012).

    Article  Google Scholar 

  3. K. Breiter, H. J. Förster, and R. Škoda, “Extreme P-, Bi-, Nb-, Sc-, U-and F-rich zircon from fractionated perphosphorous granites: the peraluminous Podlesí granite system, Czech Republic,” Lithos 88 (1–4), 15–34 (2006).

    Article  Google Scholar 

  4. D. W. Davis, T. E. Krogh, and I. S. Williams, “Historical development of zircon geochronology,” Rev. Mineral. Geochem. 53 (1), 145–181 (2003).

    Article  Google Scholar 

  5. Hoog J. C.M. De, C. J. Lissenberg, R. A. Brooker, R. Hinton, D. Trail, and E. Hellebrand, “Hydrogen incorporation and charge balance in natural zircon,” Geochim. Cosmochim. Acta 141, 472–486 (2014).

    Article  Google Scholar 

  6. W. A. Deer, R. A. Howie, and J. Zussman, “Rock-forming minerals,” Orthosilicates (Geol. Soc. London, 1997), Vol. 1a, pp. 418–442.

    Google Scholar 

  7. A. A. Fedotova, E. V. Bibikova, and S. G. Simakin, “Ion-microprobe zircon geochemistry as an indicator of mineral genesis during geochronological studies,” Geochem. Int. 46 (9), 912–927 (2008).

    Article  Google Scholar 

  8. R. J. Finch and J. M. Hanchar, “Structure and chemistry of zircon and zircon-group minerals,” Rev. Mineral. Geochem. 53 (1), 1–25 (2003).

    Article  Google Scholar 

  9. R. J. Finch, J. M. Hanchar, P. W. Hoskin, and P. C. Burns, “Rare-earth elements in synthetic zircon: Part 2. A single-crystal X-ray study of xenotime substitution,” Am. Mineral. 86 (5–6), 681–689 (2001).

    Article  Google Scholar 

  10. H. J. Förster, “Composition and origin of intermediate solid solutions in the system thorite–xenotime–zircon–coffinite,” Lithos 88 (1–4), 35–55 (2006).

    Article  Google Scholar 

  11. B. Fu, F. Z. Page, A. J. Cavosie, J. Fournelle, N. T. Kita, J. S. Lackey, S. A. Wilde, and J. W. Valley, “Ti-in-zircon thermometry: applications and limitations,” Contrib. Mineral. Petrol. 156, 197–215 (2008).

    Article  Google Scholar 

  12. T. Geisler and H. Schleicher, “Improved U–Th–total Pb dating of zircons by electron microprobe using a simple new background modeling procedure and Ca as a chemical criterion of fluid-induced U-Th-Pb discordance in zircon,” Chem. Geol. 163, 269–285 (2000).

    Article  Google Scholar 

  13. T. Geisler, U. Schaltegger, and F. Tomaschek, “Re-equilibration of zircon in aqueous fluids and melts,” Elements 3, 43–50 (2007).

    Article  Google Scholar 

  14. O. V. Grakova, “Accessory ilmenorutile in diamond-bearing Middle Devonian rocks of South Timan,” Vestn. Inst. Geol. Komi Nauchn. Ts. Ural’sk. Otd. RAS 10 (202), 11–13 (2011).

    Google Scholar 

  15. O. V. Grakova, “Species composition, chemical and typomorphic features of accessory minerals in the Devonian diamond-bearing deposits of the South and Middle Timan,” Vestn. Inst. Geol. Komi Nauchn. Ts. Ural’sk. Otd. RAS 3 (231), 3–9 (2014).

    Google Scholar 

  16. W. L. Griffin, N. J. Pearson, E. Belousova, S. V. Jackson, Achterbergh E. Van, S. Y. O’Reilly, and S. R. Shee, “The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites,” Geochim. Cosmochim. Acta 64 (1), 133–147 (2000).

    Article  Google Scholar 

  17. C. B. Grimes, B. E. John, M. J. Cheadle, F. K. Mazdab, J. L. Wooden, S. Swapp, and J. J. Schwartz, “On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere,” Contrib. Mineral. Petrol. 158 (6), 757–783 (2009).

    Article  Google Scholar 

  18. J. M. Hanchar, R. J. Finch, P. W. Hoskin, E. B. Watson, D. J. Cherniak, and A. N. Mariano, “Rare earth elements in synthetic zircon: Part 1. Synthesis, and rare earth element and phosphorus doping,” Am. Mineral. 86 (5–6), 667–680 (2001).

    Article  Google Scholar 

  19. S. L. Harley and N. M. Kelly, “Zircon tiny but timely,” Elements 3 (1), 13–18 (2007).

    Article  Google Scholar 

  20. S. Hata, “Xenotime and a variety of zircon from Iisaka,” Sc. P. Inst. Phys. Chem. Res. 34, 619–622 (1938).

    Google Scholar 

  21. R. W. Hinton and B. G. J. Upton, “The chemistry of zircon: variations within and between large crystals from syenite and alkali basalt xenoliths,” Geochim. Cosmochim. Acta 55, 3287–3302 (1991).

    Article  Google Scholar 

  22. K. Horie, H. Hidaka, and F. Gauthier-Lafaye, “Elemental distribution in zircon: alteration and radiation-damage effects,” Phys. Chem. of the Earth. Parts A/B/C. 31 (10–14), 587–592 (2006).

    Article  Google Scholar 

  23. P. W. Hoskin, “Patterns of chaos: fractal statistics and the oscillatory chemistry of zircon,” Geochim. Cosmochim. Acta. 64 (11), 1905–1923 (2000).

    Article  Google Scholar 

  24. P. W. Hoskin, “Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia,” Geochim. Cosmochim. Acta. 69 (3), 637–648 (2005).

    Article  Google Scholar 

  25. P. W. Hoskin and T. R. Ireland, “Rare earth element chemistry of zircon and its use as a provenance indicator,” Geology 28 (7), 627–630 (2000).

    Article  Google Scholar 

  26. P. W. Hoskin and U. Schaltegger, “The composition of zircon and igneous and metamorphic petrogenesis,” Rev. Mineral. Geochem. 53 (1), 27–62 (2003).

    Article  Google Scholar 

  27. X. L. Huang, R. C. Wang, X. M. Chen, and C. S. Liu, “Study on phosphorus-rich zircon from Yashan topaz–lepidolite granite, Jiangxi province, South China,” Acta Mineral. Sinica 20, 22–27 (2000).

    Google Scholar 

  28. A. I.S. Kemp, C. J. Hawkesworth, G. L. Foster, B. A. Paterson, J. D. Woodhead, J. M. Hergt, C. M. Gray, and M. J. Whitehouse, “Magmatic and crustal differentiation history of granitic rocks from Hf–O isotopes in zircon,” Science 315 (5814), 980–983 (2007).

    Article  Google Scholar 

  29. K. Kimura and Y. Hironaka, “Chemical investigations of Japanese minerals containing rarer elements: XXIII. Yamagutilite, a phosphorus-bearing variety of zircon, found at Yamaguli Village, Nagano Prefecture,” J. Chem. Soc. Japan. 57, 1195–1199 (1936).

    Google Scholar 

  30. C. L. Kirkland, R. H. Smithies, R. J. M. Taylor, N. Evans, and B. McDonald, “Zircon Th/U ratios in magmatic environs,” Lithos 212, 397–414 (2015).

    Article  Google Scholar 

  31. N. M. Kudryashov, S. G. Skublov, O. L. Galankina, O. V. Udoratina, and A. V. Voloshin, “Abnormally high-hafnium zircon from rare-metal pegmatites of the Vasin–Mylk deposit (the northeastern part of the Kola Peninsula),” Geochem. Int. 80 (3), 125489 (2020).

    Article  Google Scholar 

  32. N. B. Kuznetsov, L. M. Natapov, E. A. Belousova, U. L. Griffin, S. O’Reilli, K. V. Kulikova, A. A. Soboleva, and O. V. Udoratina, “The first results of U/Pb dating and isotope geochemical studies of detrital zircons from the Neoproterozoic sandstones of the Southern Timan (Djejim–Parma Hill),” Dokl. Earth Sci. 435 (2), 1676–1683 (2010).

    Article  Google Scholar 

  33. E. V. Levashova, M. E. Mamykina, S. G. Skublov, Q.-L. Li, and X.-H. Li, “Geochemistry of zircons (TE, REE, Oxygen isotope system) from leucogranites of the Belokurikha massif, Gorny Altai,” Geochem. Int. (in press).

  34. L. K. Levskii, S. G. Skublov, and I. M. Gembitskaya, “Isotopic-geochemical study of zircons from metabasites of the Kontokki Dike complex: age of regional metamorphism in the Kostomuksha structure,” Petrology 17 (7), 669–683 (2009).

    Article  Google Scholar 

  35. A. B. Makeyev and S. G. Skublov, “Y–REE-rich zircons of the Timan region: geochemistry and economic significance. Geochem. Int. 54 (9), 788–794 (2016).

    Article  Google Scholar 

  36. W. F. McDonough and S. S. Sun, “The composition of the Earth,” Chem. Geol. 120, 223–253 (1995).

    Article  Google Scholar 

  37. S. J. Mojzsis, T. M. Harrison, and R. T. Pidgeon, “Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago,” Nature 409 (6817), 178–181 (2001).

    Article  Google Scholar 

  38. A. Möller, P. J. O’Brien, A. Kennedy, and A. Kröner, “The use and abuse of Th-U ratios in the interpretation of zircon,” EGS-AGU–EUG Joint Assembly, No. 12113 (2003).

  39. N. Yu. Nikulova, “Composition and prospecting of the formatipon of the Upper Riphean terrigenous rocks (DzhezhimparmaUplift, South Tman),” Izv. Vyssh. Ucheb. Zaved. Geol. Razvedka, No. 4, 27–35 (2017).

    Google Scholar 

  40. V. G. Olovyanishnikov, Upper Precambrian of the Timan and Kanin Peninsula (UrO RAN, Yekaterinburg, 1998) [in Russian].

    Google Scholar 

  41. L. Raimbault, “Composition of complex lepidolite-type granitic pegmatites and of constituent columbite-tantalite, Chedeville, Massif Central, France,” Can. Mineral. 36 (2), 563–583 (1998).

    Google Scholar 

  42. L. Raimbault and L. Burnol, “The Richemont rhyolite dyke, Massif Central, France; a subvolcanic equivalent of rare-metal granites,” Can. Mineral., No. 2, 265–282 (1998).

  43. N. Rayner, R. A. Stern, and S. D. Carr, “Grain-scale variations in trace element composition of fluid-altered zircon, Acasta Gneiss Complex, northwestern Canada,” Contrib. Mineral. Petrol. 148 (6), 721–734 (2005).

    Article  Google Scholar 

  44. N. A. Rumyantseva, S. G. Skublov, B. G. Vanshtein, S.‑Kh. Li, and Ch.-L. Li, “Zircon from gabbroids of the of the Shaka Ridge (South Atlantic): U-Pb age, oxygen isotope composition, and trace-element composition,” Zap. Ross. Mineral. O-va 151 (1), 44–73 (2022).

    Google Scholar 

  45. E. S. Shcherbakov, A. M. Plyakin, and P. P. Bitkov, “Conditions of formation of the Middle Devonian diamond-bearing deposits of Timan,” Diamond and Diamond Potential of the Timan—Uralian Region: Proc. All-Russian Conference (Geoprint, Syktyvkar, 2001), pp. 39–40 [in Russian].

  46. S. G. Skublov, A. V. Berezin, X.-H. Li, Q.-L. Li, L. I. Salimgaraeva, V. V. Travin, and D. I. Rezvukhin, “Zircons from a pegmatite cutting eclogite (Gridino, Belomorian Mobile Belt): U-Pb–O and trace element constraints on eclogite metamorphism and fluid activity,” Geosci. 10 (5), 197 (2020).

    Article  Google Scholar 

  47. S. G. Skublov, A. K. Gavrilchik, and A. V. Berezin, “Geochemistry of beryl varieties: comparative analysis and visualization of analytical data by the principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE),” Zap. Gorn. Inst. 255, 455–469 (2022).

    Google Scholar 

  48. S. G. Skublov, S. B. Lobach-Zhuchenko, N. S. Guseva, I. M. Gembitskaya, and E. V. Tolmacheva, “Rare earth and trace element distribution in zircons from miaskite lamproites of the Panozero complex, Central Karelia,” Geochem. Int. 47 (9), 901–913 (2009).

    Article  Google Scholar 

  49. S. G. Skublov, Yu. B. Marin, O. L. Galankina, S. G. Simakin, T. A. Myskova, and B. Yu. Astafev, “The First Discovery of Abnormal (Y+REE)-Enriched Zircons in Rocks of the Baltic Shield,” Dokl. Earth Sci. 441 (2), 1724–1731 (2011).

    Article  Google Scholar 

  50. S. G. Skublov, N. A. Rumyantseva, Q. Li, B. G. Vanshtein, D. I. Rezvukhin, and X. Li, “Zircon xenocrysts from the Shaka Ridge record ancient continental crust: New U-Pb geochronological and oxygen isotopic data,” J. Earth Sci. 33 (1), 5–16 (2022).

    Article  Google Scholar 

  51. J. A. Speer, “Zircon,” Rev. Mineral. Geochem. 5 (1), 67–112 (1980).

    Google Scholar 

  52. Timan Range. Lithology and Stratigraphy, Geophysical Characteristics of the Earth’s Crust: Tetonics and Mineral-Raw Resources (UGTU, Ukhta, 2010), Vol. 2 [in Russian].

  53. D. Trail, S. J. Mojzsis, T. M. Harrison, A. K. Schmitt, E. B. Watson, and E. D. Young, “Constraints on Hadean zircon protoliths from oxygen isotopes, Ti-thermometry, and rare earth elements,” Geochem., Geophys., Geosyst. 8, Q06014 (2007).

    Article  Google Scholar 

  54. T. Ushikubo, N. T. Kita, A. J. Cavosie, S. A. Wilde, R. L. Rudnick, and J. W. Valley, “Lithium in Jack Hills zircons: Evidence for extensive weathering of Earth’s earliest crust,” Earth Planet. Sci. Lett. 272 (3–4), 666–676 (2008).

    Article  Google Scholar 

  55. S. J. Wang, S. G. Li, S. C. An, and Z. H. Hou, “A granulite record of multistage metamorphism and REE behavior in the Dabie orogen: constraints from zircon and rock-forming minerals,” Lithos 136, 109–125 (2012).

    Article  Google Scholar 

  56. E. B. Watson, D. A. Wark, and J. B. Thomas, “Crystallization thermometers for zircon and rutile,” Contrib. Mineral. Petrol. 151, 413–433 (2006).

    Article  Google Scholar 

  57. L. Xie, R. Wang, X. Chen, J. Qiu, and D. Wang, “Th-rich zircon from peralkaline A-type granite: Mineralogical features and petrological implications,” Chin. Sci. Bull. 50 (8), 809–817 (2005).

    Google Scholar 

  58. C. Yakymchuk, C. L. Kirkland, and C. Clark, “Th/U ratios in metamorphic zircon,” J. Metamorph. Geol. 36 (6), 715–737 (2018).

    Article  Google Scholar 

  59. W. Yang, Y. Lin, J. Hao, J. Zhang, S. Hu, and H. Ni, “Phosphorus-controlled trace element distribution in zircon revealed by NanoSIMS,” Contrib. Mineral. Petrol. 171 (3), 28 (2016).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to S.G. Simakin, E.V. Potapov (YaF FTIAN), A.S. Shuisky and E.M. Tropnikova (CCU “Geonauka” of IG FRC KOMI SC UrB RAS ) for the performance of analytical studies. O.A. Lukanin, the scientific editor of the Geochemistry International, N.V. Sorokhtina, and reviewers are thanked for help with manuscript preparation.

Funding

This work was carried out within the frameworks of the Research work of the state task of the IG FRC KOMI SC UrB RAS (project nos. 122040600013-9 and 122040600012-2) and IPGG RAS (FMUW-2022-0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Grakova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grakova, O.V., Skublov, S.G., Nikulova, N.Y. et al. Geochemistry of High-Phosphorus Zircon from the Upper Riphean Sandstones of the Southern Timan. Geochem. Int. 61, 956–971 (2023). https://doi.org/10.1134/S0016702923090057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702923090057

Keywords:

Navigation