Skip to main content
Log in

Phosphorus-controlled trace element distribution in zircon revealed by NanoSIMS

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

To better understand the origin of oscillatory zoning in zircons, distributions of REEs (represented by Ce, Sm, Dy and Lu), Y, Ti, Li and P in the igneous zircons (QH) from a felsic syenite in the Qinghu alkaline complex and metamorphic zircons (DMP06-14) from a banded granulite xenolith from Hannuoba basalts have been investigated with NanoSIMS. The NanoSIMS analyses reveal well correlation between the trace element distributions and the cathodoluminescence dark–bright zonings of zircons. The QH zircons with oscillatory zonings display large trace element variations within single grains by a factor up to 13.5, with Y and P ranging from 574 and 227 ppm in the bright zones to 7754 and 2464 ppm in the dark zones, respectively. By contrast, the DMP06-14 zircons without oscillatory zonings show much smaller trace element variations by a factor of 1.4, with Y ranging from 477 to 636 ppm and P from 331 to 467 ppm. Such large trace element variations in oscillatory zonings cannot be produced by compositional fluctuation in the magma chambers. The correlations between P and Y, REEs (Ce, Sm, Dy and Lu) (R 2 > 0.97) indicate xenotime substitution in zircons. The oscillatory distribution of P in zircon could be formed by the fluctuation of P in the melt adjacent to the mineral-melt boundary, either because P diffuses slower than Zr in the melt or due to surfacial interaction of melt with crystals. Such a zoned distribution of P in turn controls the substitution types of phosphates in zircon, developing oscillatory distributions of Y and REEs. Our results indicate that apparent partition coefficients of Y and REEs between zircon and melt are controlled by P contents, which may result in the large discrepancy in zircon partitioning data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amelin Y, Lee D-C, Halliday AN, Pidgeon RT (1999) Nature of the Earth’s earliest crust from hafnium isotopes in single detrital zircons. Nature 399:252–255. http://www.nature.com/nature/journal/v399/n6733/suppinfo/399252a0_S1.html

  • Burnham AD, Berry AJ (2012) An experimental study of trace element partitioning between zircon and melt as a function of oxygen fugacity. Geochim Cosmochim Acta 95:196–212. doi:10.1016/j.gca.2012.07.034

    Article  Google Scholar 

  • Cherniak D, Watson E (2010) Li diffusion in zircon. Contrib Mineral Petrol 160:383–390. doi:10.1007/s00410-009-0483-5

    Article  Google Scholar 

  • Davis DW, Krogh TE, Williams IS (2003) Historical development of zircon geochronology. Rev Mineral Geochem 53:145–181. doi:10.2113/0530145

    Article  Google Scholar 

  • Ferry JM, Watson EB (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Mineral Petrol 154:429–437. doi:10.1007/s00410-007-0201-0

    Article  Google Scholar 

  • Finch RJ, Hanchar JM (2003) Structure and chemistry of zircon and zircon-group. Miner Rev Mineral Geochem 53:1–25. doi:10.2113/0530001

    Article  Google Scholar 

  • Finch RJ, Hanchar JM, Hoskin PWO, Burns PC (2001) Rare-earth elements in synthetic zircon: part 2. A single-crystal X-ray study of xenotime substitution. Am Mineral 86:681–689

    Article  Google Scholar 

  • Fowler A, Prokoph A, Stern R, Dupuis C (2002) Organization of oscillatory zoning in zircon: analysis, scaling, geochemistry, and model of a zircon from Kipawa, Quebec, Canada. Geochim Cosmochim Acta 66:311–328

    Article  Google Scholar 

  • Fu B et al (2008) Ti-in-zircon thermometry: applications and limitations. Contrib Miner Petrol 156:197–215. doi:10.1007/s00410-008-0281-5

    Article  Google Scholar 

  • Gardner J, Carey S, Rutherford M, Sigurdsson H (1995) Petrologic diversity in Mount St. Helens dacites during the last 4000 years: implications for magma mixing. Contrib Miner Petrol 119:224–238. doi:10.1007/bf00307283

    Article  Google Scholar 

  • Griffin WL, Pearson NJ, Belousova E, Jackson SE, van Achterbergh E, O’Reilly SY, Shee SR (2000) The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta 64:133–147

    Article  Google Scholar 

  • Halden NM, Hawthorne FC (1993) The fractal geometry of oscillatory zoning in crystals; application to zircon. Am Mineral 78:1113–1116

    Google Scholar 

  • Hanchar JM, van Westrenen W (2007) Rare earth element behavior in zircon-melt systems. Elements 3:37–42. doi:10.2113/gselements.3.1.37

    Article  Google Scholar 

  • Hanchar JM, Finch RJ, Hoskin PWO, Watson EB, Cherniak DJ, Mariano AN (2001) Rare earth elements in synthetic zircon: part 1. Synthesis, and rare earth element and phosphorus doping. Am Mineral 86:667–680

    Article  Google Scholar 

  • Harrison TM, Schmitt AK (2007) High sensitivity mapping of Ti distributions in Hadean zircons. Earth Planet Sci Lett 261:9–19

    Article  Google Scholar 

  • Harrison TM, Watson EB (1983) Kinetics of zircon dissolution and zirconium diffusion in granitic melts of variable water content. Contrib Miner Petrol 84:66–72. doi:10.1007/bf01132331

    Article  Google Scholar 

  • Harrison TM, Watson EB (1984) The behavior of apatite during crustal anatexis: equilibrium and kinetic considerations. Geochim Cosmochim Acta 48:1467–1477

    Article  Google Scholar 

  • Hiess J, Nutman AP, Bennett VC, Holden P (2008) Ti-in-zircon thermometry applied to contrasting Archean metamorphic and igneous systems. Chem Geol 247:323–338

    Article  Google Scholar 

  • Hofmann A, Valley J, Watson E, Cavosie A, Eiler J (2009) Sub-micron scale distributions of trace elements in zircon. Contrib Miner Petrol 158:317–335. doi:10.1007/s00410-009-0385-6

    Article  Google Scholar 

  • Hofmann A, Baker M, Eiler J (2014) Sub-micron-scale trace-element distributions in natural zircons of known provenance: implications for Ti-in-zircon thermometry. Contrib Miner Petrol 168:1–21. doi:10.1007/s00410-014-1057-8

    Article  Google Scholar 

  • Hoskin PWO (2000) Patterns of chaos: fractal statistics and the oscillatory chemistry of zircon. Geochim Cosmochim Acta 64:1905–1923

    Article  Google Scholar 

  • Hoskin PWO (2005) Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim Cosmochim Acta 69:637–648

    Article  Google Scholar 

  • Hoskin PWO, Ireland TR (2000) Rare earth element chemistry of zircon and its use as a provenance indicator. Geology 28:627–630. doi:10.1130/0091-7613(2000)28<627:reecoz>2.0.co;2

    Article  Google Scholar 

  • Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem 53:27–62. doi:10.2113/0530027

    Article  Google Scholar 

  • Hoskin P, Arslan M, Aslan Z, Bolnmu JMJ (1998) Clinopyroxene phenocryst formation in an alkaline magma: interpretations from oscillatory zoning. Mineral Mag 62:653–654

    Article  Google Scholar 

  • Huang F et al (2009) Chemical and isotopic fractionation of wet andesite in a temperature gradient: experiments and models suggesting a new mechanism of magma differentiation. Geochim Cosmochim Acta 73:729–749. doi:10.1016/j.gca.2008.11.012

    Article  Google Scholar 

  • Huang F, Chakraborty P, Lundstrom CC, Holmden C, Glessner JJG, Kieffer SW, Lesher CE (2010) Isotope fractionation in silicate melts by thermal diffusion. Nature 464:396–400. http://www.nature.com/nature/journal/v464/n7287/suppinfo/nature08840_S1.html

  • Kemp AIS et al (2007) Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science 315:980–983

    Article  Google Scholar 

  • L’Heureux I, Fowler AD (1996) Dynamical model of oscillatory zoning in plagioclase with nonlinear partition relation. Geophys Res Lett 23:17–20. doi:10.1029/95gl03327

    Article  Google Scholar 

  • Li XH, Liu Y, Li QL, Guo CH, Chamberlain KR (2009) Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochem Geophys Geosyst 10:Q04010. doi:10.1029/2009GC002400

    Google Scholar 

  • Li WY, Teng FZ, Ke S, Rudnick RL, Gao S, Wu FY, Chappell BW (2010) Heterogeneous magnesium isotopic composition of the upper continental crust. Geochim Cosmochim Acta 74:6867–6884

    Article  Google Scholar 

  • Liu SJ, Li JH, Santosh M (2010) First application of the revised Ti-in-zircon geothermometer to Paleoproterozoic ultrahigh-temperature granulites of Tuguiwula, Inner Mongolia, North China Craton. Contrib Mineral Petrol 159:225–235. doi:10.1007/s00410-009-0425-2

    Article  Google Scholar 

  • Loomis T (1982) Numerical simulations of crystallization processes of plagioclase in complex melts: the origin of major and oscillatory zoning in plagioclase. Contrib Miner Petrol 81:219–229. doi:10.1007/bf00371299

    Article  Google Scholar 

  • Luo Y, Ayers JC (2009) Experimental measurements of zircon/melt trace-element partition coefficients. Geochim Cosmochim Acta 73:3656–3679. doi:10.1016/j.gca.2009.03.027

    Article  Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Mojzsis SJ, Harrison TM, Pidgeon RT (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4300[thinsp]Myr ago. Nature 409:178–181. http://www.nature.com/nature/journal/v409/n6817/suppinfo/409178A0_S1.html

  • Nardi LVS, Formoso MLL, Müller IF, Fontana E, Jarvis K, Lamarão C (2013) Zircon/rock partition coefficients of REEs, Y, Th, U, Nb, and Ta in granitic rocks: uses for provenance and mineral exploration purposes. Chem Geol 335:1–7. doi:10.1016/j.chemgeo.2012.10.043

    Article  Google Scholar 

  • Nasdala L et al (2008) Zircon M257—homogeneous natural reference material for the ion microprobe U-Pb Analysis of zircon. Geostand Geoanal Res 32:247–265

    Article  Google Scholar 

  • Page FZ et al (2007) Zircons from kimberlite: new insights from oxygen isotopes, trace elements, and Ti in zircon thermometry. Geochim Cosmochim Acta 71:3887–3903

    Article  Google Scholar 

  • Pearce N, Perkins W, Westgate J, Gorton M, Jackson S, Neal C, Chenery S (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Geoanal Res 21:115–144

    Article  Google Scholar 

  • Poitrasson F, Freydier R (2005) Heavy iron isotope composition of granites determined by high resolution MC-ICP-MS. Chem Geol 222:132–147

    Article  Google Scholar 

  • Richter FM, Watson EB, Mendybaev RA, Teng F-Z, Janney PE (2008) Magnesium isotope fractionation in silicate melts by chemical and thermal diffusion. Geochim Cosmochim Acta 72:206–220

    Article  Google Scholar 

  • Rustad J (2015) Interaction of rhyolite melts with monazite, xenotime, and zircon surfaces. Contrib Miner Petrol 169:1–8. doi:10.1007/s00410-015-1142-7

    Article  Google Scholar 

  • Sano Y, Terada K, Fukuoka T (2002) High mass resolution ion microprobe analysis of rare earth elements in silicate glass, apatite and zircon: lack of matrix dependency. Chem Geol 184:217–230

    Article  Google Scholar 

  • Singer BS, Dungan MA, Layne GD (1995) Textures and Sr, Ba, Mg, Fe, K, and Ti compositional profiles in volcanic plagioclase: clues to the dynamics of calc-alkaline magma chambers. Am Mineral 80:776–798

    Article  Google Scholar 

  • Speer J (1980) Zircon. In: Ribbe PH (ed) Orthosilicates. Reviews in mineralogy, vol 5. Mineralogical Society of America, Washington, DC, pp 67–112

  • Thomas JB, Bodnar RJ, Shimizu N, Sinha AK (2002) Determination of zircon/melt trace element partition coefficients from SIMS analysis of melt inclusions in zircon. Geochim Cosmochim Acta 66:2887–2901. doi:10.1016/S0016-7037(02)00881-5

    Article  Google Scholar 

  • Trail D, Mojzsis SJ, Harrison TM, Schmitt AK, Watson EB, Young ED (2007) Constraints on Hadean zircon protoliths from oxygen isotopes, Ti-thermometry, and rare earth elements. Geochem Geophys Geosyst 8:Q06014. doi:10.1029/2006gc001449

    Article  Google Scholar 

  • Ushikubo T, Kita NT, Cavosie AJ, Wilde SA, Rudnick RL, Valley JW (2008) Lithium in Jack Hills zircons: evidence for extensive weathering of Earth’s earliest crust. Earth Planet Sci Lett 272:666–676

    Article  Google Scholar 

  • Vavra G (1990) On the kinematics of zircon growth and its petrogenetic significance: a cathodoluminescence study. Contrib Miner Petrol 106:90–99. doi:10.1007/BF00306410

    Article  Google Scholar 

  • Wang Y, Merino E (1992) Dynamic model of oscillatory zoning of trace elements in calcite: double layer, inhibition, and self-organization. Geochim Cosmochim Acta 56:587–596

    Article  Google Scholar 

  • Wang S-J, Li S-G, An S-C, Hou Z-H (2012) A granulite record of multistage metamorphism and REE behavior in the Dabie orogen: constraints from zircon and rock-forming minerals. Lithos 136–139:109–125. doi:10.1016/j.lithos.2011.11.001

    Article  Google Scholar 

  • Watson EB (1979) Zircon saturation in felsic liquids: experimental results and applications to trace element geochemistry. Contrib Miner Petrol 70:407–419. doi:10.1007/bf00371047

    Article  Google Scholar 

  • Watson EB (1980) Some experimentally determined zircon/liquid partition coefficients for the rare earth elements. Geochim Cosmochim Acta 44:895–897

    Article  Google Scholar 

  • Watson EB (1996) Dissolution, growth and survival of zircons during crustal fusion: kinetic principals, geological models and implications for isotopic inheritance. Earth Environ Sci Trans R Soc Edinb 87:43–56. doi:10.1017/S0263593300006465

    Article  Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    Article  Google Scholar 

  • Watson EB, Harrison TM (2005) Zircon thermometer reveals minimum melting conditions on earliest. Earth Sci 308:841–844. doi:10.1126/science.1110873

    Google Scholar 

  • Watson E, Wark D, Thomas J (2006) Crystallization thermometers for zircon and rutile. Contrib Miner Petrol 151:413–433. doi:10.1007/s00410-006-0068-5

    Article  Google Scholar 

  • Wiedenbeck M et al (1995) Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand Newslett 19:1–23. doi:10.1111/j.1751-908X.1995.tb00147.x

    Article  Google Scholar 

  • Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178

    Article  Google Scholar 

  • Yang J-H, Wu F-Y, Wilde S, Xie L-W, Yang Y-H, Liu X-M (2007) Tracing magma mixing in granite genesis: in situ U-Pb dating and Hf-isotope analysis of zircons. Contrib Miner Petrol 153:177–190. doi:10.1007/s00410-006-0139-7

    Article  Google Scholar 

  • Yuan H, Gao S, Liu X, Li H, Günther D, Wu F (2004) Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostand Geoanal Res 28:353–370. doi:10.1111/j.1751-908X.2004.tb00755.x

    Article  Google Scholar 

  • Zhang Y (2008) Geochemical kinetics. Princeton University Press, Princeton, pp 409–411

    Google Scholar 

  • Zhang H-F, Yang Y-H, Santosh M, Zhao X-M, Ying J-F, Xiao Y (2012) Evolution of the Archean and Paleoproterozoic lower crust beneath the Trans-North China Orogen and the Western Block of the North China Craton. Gondwana Res 22:73–85

    Article  Google Scholar 

Download references

Acknowledgments

We thank Xianhua Li, Hongfu Zhang, Qiuli Li, Yu Liu, Guoqiang Tang for providing zircon samples, Lu Feng, Xuchao Zhao, Yuchen Xu for assistances in the laboratory and Yun Liu for discussion. Constructive comments from Qinzhu Yin, Fang Huang, Yan Luo, Shuijiong Wang, Liwei Deng and two anonymous reviewers are greatly appreciated. This work was supported by the National Science Foundation of China (Grants 41322022, 41230209, 41521062, 41173012, 41430105) and by CNSA (Grant No. TY3Q20110029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yang.

Additional information

Communicated by Timothy L. Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 7012 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Lin, Y., Hao, J. et al. Phosphorus-controlled trace element distribution in zircon revealed by NanoSIMS. Contrib Mineral Petrol 171, 28 (2016). https://doi.org/10.1007/s00410-016-1242-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-016-1242-z

Keywords

Navigation