Skip to main content
Log in

Neoproterozoic Felsic Volcano-plutonic Rocks, Tusham Ring Complex, Malani Igneous Suite, NW Indian Shield: Petrogenetic Modeling, Magmatic Source and Geodynamic Evolution

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

This paper reports petrogenetic modelling and geodynamic evolution of felsic volcano-plutonic rocks of Riwasa and Nigana areas from Tusham Ring Complex (TRC), NW Indian shield and also discusses their geochemical characteristics to understand the possible magmatic source. These granitoids are identified with hypersolvus, high-K calc-alkaline to shoshonitic series, peraluminous, ferroan, typical A-type affinity and anorogenic genesis. The investigated rocks are enriched in SiO2, Na2O + K2O, REEs (except Eu), LILE + HFSE, halogens (F and Cl), depleted in CaO, MgO, Sr, Cr, Ni, P, Ti, V and Eu abundances and have elevated Fe/Mg, Ga/Al, Th/U, A/CNK ratios. The elemental geochemistry in conjunction with petrogenetic modelling (batch melting plus fractional crystallization) suggests that the felsic volcano-plutonic rocks of TRC were derived from a source similar to 12% partial melting of Nathwara tholeiitic basalt leaving a residue with (80% plagioclase, 5% orthoclase, 5% clinopyroxene, 5% orthopyroxene and 5% hornblende), 9% partial melting of Kundal basalt leaving a residue with (67% plagioclase, 13% orthoclase, 8% clinopyroxene, 7% orthopyroxene and 5% hornblende), 5% partial melting of Mesoproterozoic plagioclase amphibolite of southwestern Yangtze Block leaving a residue with (79% plagioclase, 4% orthoclase, 4% clinopyroxene, 9% orthopyroxene and 4% hornblende) and 15% fractional crystallization of least evolved felsic volcanic rocks leaving a residue with (60% plagioclase, 20% clinopyroxene, 5% hornblende and 5% magnetite). In this study, we also propose that the tectonic-magmatic activities that occurred in TRC are closely related to Neoproterozoic magmatism of NW India (Malani Igneous Suite-MIS), South China (SW Yangtze Block), NW Vietnam (Phan Si Pan Zone), SE Pakistan (Nagarparkar Igneous Complex), Seychelles and Madagascar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. T. Ahmad, M. Deb, J. Tarney, and M. Raza, “Proterozoic mafic volcanism in the Aravalli–Delhi Orogen, Northwestern India: Geochemistry and tectonic framework,” J. Geol. Soc. India 72, 93–111 (2008).

    Google Scholar 

  2. C. J. Allègre and J. F. Minster, “Quantitative models of trace element behavior in magmatic processes,” Earth Planet. Sci. Lett. 38, 1–25 (1978).

    Article  Google Scholar 

  3. J. L. Anderson, “Proterozoic anorogenic granite plutonism of North America,” Bull. Geol. Soc. Am. 161, 133–154 (1983).

    Google Scholar 

  4. S. E. Armistead, A. S. Collins, A. S. Merdith, et al., “Evolving marginal terranes during Neoproterozoic supercontinent reorganization: constraints from the Bemarivo Domain in northern Madagascar,” Tectonics 38, 2019–2035 (2019).

    Article  Google Scholar 

  5. J. G. Arth, “Behaviour of trace elements during magmatic processes-a summary of theoretical models and their applications,” J. Res., U.S. Geol. Surv 4, 41–47 (1976).

    Google Scholar 

  6. L. D. Ashwal, A. M. Solanki, M. K. Pandit, et al., “Geochronology and geochemistry of Neoproterozoic Mt. Abu granitoids, NW India: Regional correlation and implications for Rodinia paleogeography,” Precambrian Res. 236, 265–281 (2013).

    Article  Google Scholar 

  7. B. Barbarin, “A review of the relationships between granitoid types, their origins and their geodynamic environments,” Lithos 46, 605–626 (1999).

    Article  Google Scholar 

  8. M. Barboni and F. Bussy, “Petrogenesis of magmatic albite granites associated to cogenetic A-type granites: Na-rich residual melt extraction from a partially crystallized A-type granite mush,” Lithos 177, 328–351 (2013).

    Article  Google Scholar 

  9. R. A. Batchelor and P. Bowden, “Petrogenetic interpretation of granitoid rock series using multicationic parameters,” Chem. Geol. 8, 43–55 (1985).

    Article  Google Scholar 

  10. S. K. Bhushan, “Malani rhyolites: a review,” Gondwana Res. 3, 65–77 (2000).

    Article  Google Scholar 

  11. B. Bonin, “A-type granites and related rocks: Evolution of a concept, problems and prospects,” Lithos 97, 1–29 (2007).

    Article  Google Scholar 

  12. S. K. Bhushan and V. Chandrasekaran, “Geology and geochemistry of the magmatic rocks of the Malani Igneous Suite and tertiary alkaline province of western Rajasthan,” Mem. Geol. Surv. India 126, 1–129 (2002).

    Google Scholar 

  13. B. Bonin, J. M. Bardintzeff, and A. Giret, “The distribution of felsic rocks within the alkaline igneous centers,” Géologie, Géochimie et Géophysique des Kerguelen, Ed. by R. Schlich and A. Giret, Mém. Soc. Géol. Fr. 166, 9–24 (1994).

  14. X. F. Cao, X. B. Lu, S. T. Liu, P. Zhang, P. X. Gao, C. Chen, and Y. L. Mo, “LA-ICP-MS zircon dating, geochemistry, petrogenesis and tectonic implications of the Dapingliang Neoproterozoic granites at Kuluketage block, NW China,” Precambrian Res. 186, 205–219 (2011).

    Article  Google Scholar 

  15. B. W. Chappell and A. J. R. White, “I- and S-type granites in the Lachlan Fold Belt,” Trans. R. Soc. Edinb., Earth Sci. 83, 1–26 (1991).

    Google Scholar 

  16. J. D. Clemens, J. R. Holloway, and A. J. R. White, “Origin of an A-type granite: Experimental constraints,” Am. Mineral. 71, 317– 324 (1986).

    Google Scholar 

  17. W. J. Collins, S. D. Beams, A. J. R. White, et al., “Nature and origin of A-type granites with particular reference to southeastern Australia,” Contrib. Mineral. Petrol. 80, 189-200 (1982).

    Article  Google Scholar 

  18. A. R. Crawford and W. Compston, “The age of the Vindhyan system of peninsular India,” J. Geol. Soc. London 125, 351–370 (1970).

    Article  Google Scholar 

  19. R. A. Creaser, R. C. Price, and R. J. Wormald, “A-type granites revisited: Assessment of a residual-source modal,” Geology 19, 163–166 (1991).

    Article  Google Scholar 

  20. W. A. Deer, R. A. Howie, and J. Zussman, An Introduction to the Rock-Forming Minerals, 2nd Edition (Longman Scientific & Technical, London, 1992).

    Google Scholar 

  21. H. de Wall, M. K. Pandit, I. Donhauser, et al., “Evolution and tectonic setting of the Malani–Nagarparkar Igneous Suite: A Neoproterozoic Silicic-dominated Large igneous province in NW India-SE Pakistan,” J. Asian Earth Sci. 160, 136–158 (2018).

    Article  Google Scholar 

  22. C. Deniel, P. Vidal, and A. Fernandez, “Isotopic study of the Manaslu granite (Himalaya, Nepal): inferences on the age and source of Himalayan leucogranites,” Contrib. Mineral. Petrol. 96, 78–92 (1987).

    Article  Google Scholar 

  23. S. Dhar, R. Frel, S. J. D. Kramer, et al., “Sr, Pb and Nd isotope studies and their bearing on the petrogenesis of the Jalor and Siwana complexes, Rajasthan, India,” J. Geol. Soc. India 48, 151–160 (1996).

    Google Scholar 

  24. G. N. Eby, “Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications,” Geology 20, 641–644 (1992).

    Article  Google Scholar 

  25. G. N. Eby, and N. Kochhar, “Geochemistry and petrogenesis of the Malani Igneous Suite, North Peninsular India,” Jour. Geol. Soc. India 36, 109-130 (1990).

    Google Scholar 

  26. H. E. Frimmel, R. Zartman and E. Spath, “The Richtersveld igneous complex, South Africa: U-Pb zircon and geochemical evidence for the beginning of Neoproterozoic continental breakup,” J. Geol. 109, 493–508 (2001).

    Article  Google Scholar 

  27. M. F. Ghoneim, E. M. Lebda, B. B. Nasr, and M. Z. Khedr, “Geology and tectonic evolution of the area around Wadi Arais, southern Eastern Desert, Egypt,” In: 6 th International Conference on the Geology of the Arab World (GAW 6) (University of Cairo, 2002), Vol. 1, 45–66.

  28. A. F. Glazner, D. S. Coleman, J. M. Bartley, “The tenuous connection between high-silica rhyolites and granodiorite plutons,” Geology 36, 1047–1050 (2008).

    Article  Google Scholar 

  29. A. V. Grebennikov, “A-type granites and related rocks: petrogenesis and classification,” Russ. Geol. Geophys. 55, 1074–1086 (2014).

    Article  Google Scholar 

  30. L. C. Gregory, J. G. Meert, B. Bingen, et al., “Paleomagnetism and geochronology of the Malani Igneous Suite, Northwest India: Implications for the configuration of Rodinia and the assembly of Gondwana,” Precambrian Res. 170, 13–26 (2009).

    Article  Google Scholar 

  31. P. Gromet and L. T. Silver, “REE variations across the Peninsular Ranges Batholith: implications for batholithic petrogenesis and crustal growth in magmatic arcs,” J. Petrol. 28, 75–125 (1987).

    Article  Google Scholar 

  32. A. N. Halliday, J. P. Davidson, W. Hildreth, and P. Holden, “Modeling the petrogenesis of high Rb/Sr silicic magmas,” Chem. Geol. 92, 107–114 (1991).

    Article  Google Scholar 

  33. M. T. S. Heikal, M. Z. Khedr, M. A. E. Monsef, et al., “Petrogenesis and geodynamic evolution of Neoproterozoic Abu Dabbab Albite Granite, Central Eastern Desert of Egypt: Petrological and geochemical constraints,” J. Afr. Earth Sci. 158, 103518 (2019).

    Article  Google Scholar 

  34. D. Huang, X. L. Wang, X. P. Xia, et al., “Neoproterozoic low-δ18O zircons revisited: implications for Rodinia configuration,” Geophys. Res. Lett. 46, 678–688 (2019).

    Article  Google Scholar 

  35. B. M. Jahn, F. Y. Wu, R. Cabdevila, F. Martineau, Z. H. Zhao, and Y. X. Wang, “Highly evolved juvenile granites with tetrad REE patterns: the Woduhe and Baerzhe granites from the great Xing’an mountains, NE China,” Lithos 59, 171–198 (2001).

    Article  Google Scholar 

  36. P. Kaur, N. Chaudhri, and N. Eliyas, “Chlorine-rich amphibole and biotite in the A-type granites, Rajasthan, NW India: Potential indicators of subsolidus fluid-rock interaction and metallogeny,” Geol. J. 54, 614–630 (2019).

    Article  Google Scholar 

  37. T. Khan, M. Murata, H. U. Rehman, et al., “Nagarparkar granites showing remnants in the southeastern part of Pakistan,” J. Asian Earth Sci. 59, 39–51 (2012).

    Article  Google Scholar 

  38. N. Kochhar, “Attributes and significance of the A-type Malani magmatism, northwestern Peninsular India,” Crustal Solution and Metallogeny in the North Western India Shield, Ed. by M. Deb (Narosa Publ., New Delhi, 2000), pp. 158–188.

    Google Scholar 

  39. N. Kochhar, “Tusham ring complex, Bhiwani district, India,” Proc. Ind. Nat. Sci. Acad. 49, 459–490 (1983).

    Google Scholar 

  40. N. Kochhar, “Malani Igneous Suite: Porphyry copper and tin deposits from the Tusham Ring Complex, North Peninsular India,” Geol. Carpath. 36, 245–255 (1985).

    Google Scholar 

  41. N. Kochhar, “Mineralisation associated with A-type Malani magmatism, North West Peninsular India,” In: Metallogeny Related to Tectonics of the Proterozoic Mobile Belts, Ed. by S. C. Sarkar (Oxford and IBH. Pub. Ltd., New Delhi, 1992), pp.209–224.

  42. N. Kochhar, “The Malani supercontinent,” In The Frontiers of Earth Science, Ed. by K. L. Shrivastava and P. K. Shrivastava (Scientific Publishers, 2015), pp. 122–136.

    Google Scholar 

  43. N. Kochhar, K. Pande, and K. Gopalan, “Rb-Sr age of the Tusham ring complex, Bhiwani, India,” J. Geol. Soc. India 26, 216–218 (1985).

    Google Scholar 

  44. D. Konopelko, G. Biske, R. Seltmann, O. Eklund, and B. Belyatsky, “Hercynian postcollisional A-type granites of the Kokshaal Range, Southern Tien Shan, Kyrgyzstan,” Lithos 97, 140–160 (2007).

    Article  Google Scholar 

  45. N. Kumar and N. Kumar, “A2-type granitoids in anorogenic settings of Tusham Ring Complex: New concept, relevant to existence of the Malani Supercontinent,” J. Himal. Earth Sci. 53, 23–38 (2020).

    Google Scholar 

  46. N. Kumar and G. Vallinayagam, “Tectonic significance of Neoproterozoic magmatism of Nakora area, Malani Igneous Suite, District Barmer, Western Rajasthan, India,” Geotectonics 48, 239–253 (2014).

    Article  Google Scholar 

  47. N. Kumar, N. Kumar, and A. K. Singh, “Petrology and geochemistry of acid volcano-plutonic rocks from Riwasa and Nigana areas of Neoproterozoic Malani Igneous Suite, Northwestern Peninsular India: An understanding approach to magmatic evolution,” Geochem. Int. 57, 645–667 (2019).

    Article  Google Scholar 

  48. N. Kumar, N. Kumar, R. Sharma, and A. K. Singh, “Petrogenesis and tectonic significance of the Neoproterozoic magmatism of the Tusham Ring Complex (NW Indian Shield): Insight into tectonic evolution of the Malani Igneous Suite and Rodinia supercontinent,” Geotectonics 54, 428–453 (2020a).

    Article  Google Scholar 

  49. N. Kumar, R. Sharma, N. Kumar, and A. K. Singh, “A review on petrology and geochemistry of the Neoproterozoic Malani Igneous Suite and related rocks (Northwestern Peninsular India),” Petrology 28, 591–657 (2020b).

    Article  Google Scholar 

  50. N. Kumar, N. Kumar, R. Sharma, and A. K. Singh, “Geochemical characteristics of fluorine- and chlorine-bearing biotite from Tusham Ring Complex, NW India: Constraints on halogen distribution and geodynamic evolution,” J. Earth Sys. Sci. 130, 1–20 (2021).

    Article  Google Scholar 

  51. B. Landenberger and W. J. Collins, “Derivation of A-type granites from dehydrated charnockitic lower crust: evidence from the Chaelundi complex Eastern Australia,” J. Petrol. 37, 145–170 (1996).

    Article  Google Scholar 

  52. M. J. Le Bas, R. W. Maitre, A. Streckeisen, et al., “A chemical classification of volcanic rocks based on the total alkali‒silica diagram,” J. Petrol. 27, 745‒750 (1986).

    Article  Google Scholar 

  53. Z. X. Li, S. V. Bogdanova, A. S. Collins, et al., “Assembly, configuration, and break-up history of Rodinia: A synthesis,” Precambrian Res. 160, 179‒210 (2008).

    Article  Google Scholar 

  54. B. A. Litvinovsky, B. M. Jahn, A. N. Zanvilevich, A. Saunders, S. Poulain, “Petrogenesis of syenite‒granite suites from the Bryansky complex (Transbaikalia, Russia): implications for the origin of A-type granitoid magmas,” Chem. Geol. 189, 105‒133 (2011).

    Article  Google Scholar 

  55. G. Liu, J. Li, X. Qian, et al., “Geochronological and geochemical constraints on the peterogenesis of late mesoproterozoic mafic and granitic rocks in the southwestern Yangtze Block,” Geosci. Front. 12, 39‒52 (2021).

    Article  Google Scholar 

  56. H.-Q. Liu, Y.-G. Xu, W. Tian, Y.-T. Zhong, R. Mundil, X.‑H. Li, Y.-H. Yang, Z.-Y. Luo, S.-M. Shang-Guan, “Origin of two types of rhyolites in the Tarim Large Igneous Province: Consequences of incubation and melting of a mantle plume,” Lithos 204, 59‒72 (2014).

    Article  Google Scholar 

  57. T. S. Mac Carthy and R. A. Hasty, “Trace element distribution patterns and their relationship to the crystallization of granite melts,” Geochim. Cosmochim. Acta 40, 1351–1358 (1976).

    Article  Google Scholar 

  58. A. Maheshwari, M. Coltorti, S. K. Rajput, et al., “Geochemical characteristics, discrimination and petrogenesis of Neoproterozoic peralkaline granites, Barmer district, SW Rajasthan, India,” Int. Geol. Rev. 51, 1103-1120 (2009).

    Article  Google Scholar 

  59. A. Maheshwari, A. N. Sial, M. Coltorti, et al., “Geochemistry and Petrogenesis of Siwana Peralkaline Granites, West of Barmer, Rajasthan, India,” Gondwana Res. 4, 87‒95 (2001).

    Article  Google Scholar 

  60. P. D. Maniar and P. M. Piccoli, “Tectonic Discrimination of Granitoids,” J. Geol. Soc. Am. Bull. 101, 635‒643 (1989).

    Article  Google Scholar 

  61. E. McClellan and E. Gazel, “The Cryogenian intra-continental rifting of Rodinia: Evidence from the Laurentian margin in eastern North America,” Lithos 206–207, 321–337 (2014).

    Article  Google Scholar 

  62. J. G. Meert, M. K. Pandit, and G. D. Kamenov, “Further geochronological and paleomagnetic constraints on Malani (and pre-Malani) magmatism in NW India,” Tectonophysics 608, 1254‒1267 (2013).

    Article  Google Scholar 

  63. P. Minh, P. T. Hieu, N. T. B. Thuy, et al., “Neoproterozoic granitoids from the Phan Si Pan Zone, NW Vietnam: geochemistry and geochronology constraints on reconstructing South China-India Palaeogeography,” Int. Geol. Rev. 63, 585‒600 (2021).

    Article  Google Scholar 

  64. A.-K. M. Moghazi, L. M. Laccheri, R. A. Bakhsh, A. B. Kotov, and K. A. Ali, “Sources of rare-metal-bearing A‑type granites from Jabel Sayed Complex, Northern Arabian Shield, Saudi Arabia,” J. Asian Earth. Sci. 107, 244‒258 (2015).

    Article  Google Scholar 

  65. A. Mushkin, O. Navon, L. Halicz, G. Hartmann, and M. Stein, “The petrogenesis of A-type magmas from the Amram Massif, southern Israel,” J. Petrol. 44, 815–832 (2003).

    Article  Google Scholar 

  66. A. F. Osman and B. A. El. Kalioubi, “Neoproterozoic post-collisional granitoids in the Central Eastern Desert of Egypt: Petrological and geochemical constraints,” J. Earth Sci. 99, 39‒50 (2014).

    Google Scholar 

  67. M. K. Pandit, L. D. Ashwal, R. D. Tucker, et al., “Proterozoic acid magmatism in the Northwestern Indian shield and its significance for Rodinia construction,” Gondwana Res. 4, 726‒728 (2001).

    Article  Google Scholar 

  68. H. S. Pareek, “Petrochemistry and petrogenesis of the Malani Igneous Suite, India,” Geol. Soc. Amer. Bull. 92, 206‒273 (1981).

    Article  Google Scholar 

  69. J. K. Park, K. L. Buchan, and S. S. Harlan, “A proposed giant radiating dyke swarm fragmented by the separation of Laurentia and Australia based on paleomagnetism of ca. 780 Ma mafic intrusions in western North America,” Earth Planet. Sci. Lett. 132, 129–139 (1995).

    Article  Google Scholar 

  70. A. E. Patiño-Douce, “Effects of pressure and H2O content on the composition of primary crustal melts,” Trans. R. Soc. Edinb., Earth Sci. 87, 11–21 (1996).

    Google Scholar 

  71. A. E. Patiño-Douce, “What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In: Understanding Granites: Integrating New and Classical Techniques, Ed. by A. Castro, C. Fernandez, and J. L. Vigneressese, Geol. Soc. London, Spec. Publ. 168, 55–75 (1999).

  72. A. E. Patiño-Douce and J. S. Beard, “Effects of P, fO2and Mg/Fe ratio on dehydration melting of model metagreywackes,” J. Petrol. 37, 999–1024 (1996).

    Article  Google Scholar 

  73. J. A. Pearce, N. B. W. Harris, and A. G. Tindle, “Trace element discrimination diagrams for the tectonic interpretation of granitic rocks,” Petrology 25, 956‒983 (1984).

    Article  Google Scholar 

  74. A. Peccerillo and S. R. Taylor, “Geochemistry of some calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey,” Contrib. Mineral. Petrol. 58, 63‒81 (1976).

    Article  Google Scholar 

  75. A. K. Singh and R. K. B. Singh, “Petrogenetic evolution of the felsic and mafic volcanic suite in the Siang window of Eastern Himalaya, Northeast India,” Geosci. Front. 3, 613‒634 (2012).

    Article  Google Scholar 

  76. C. M. Powell, W. V. Preiss, C. G. Gatehouse, B. Krapez, and Z. X. Li, “South Australian record of a Rodinian epicontinental basin and its mid-Neoproterozoic breakup (∼700 Ma) to form the Palaeo-Pacific Ocean,” Tectonophysics 237, 113–140 (1994).

    Article  Google Scholar 

  77. W. V. Preiss, “The Adelaide geosyncline of South Australia and its significance in Neoproterozoic continental reconstruction,” Precambrian Res. 100, 21–63 (2000).

    Article  Google Scholar 

  78. L. Raimbault, B. Chary, M. Cuney, and P. J. Pollard, “Comparative geochemistry of Tabearing granites. In: Source, Transport and Deposition of Metals, Ed. by M. Pageland and G. Leroy, Abstracts (Balkema, Rotterdam, 1991), pp. 793‒796.

  79. H. M. Rajesh, “Characterization and origin of a compositionally zoned aluminous A-type granite from South India,” Geol. Mag. 137, 291–318 (2000).

    Article  Google Scholar 

  80. M. P. Roberts and J. D. Clemens, “The origin of high-K, calc-alkaline, I-type granitoid magmas,” Geology 21, 825–828 (1993).

    Article  Google Scholar 

  81. H. D. L. Roche, J. Leterrier, P. Grandclaude, et al., “A classification of volcanic and plutonic rocks using R1‒R2 diagram and major-element analysis-its relationship with current nomenclature,” Chem. Geol. 29, 183‒210 (1980).

    Article  Google Scholar 

  82. H. Rollinson, Using Geochemical Data: Evolution, Presentation, Interpretation, (Longman Scientific and Technical, New York, 1993).

    Google Scholar 

  83. R. L. Rudnick and S. Gao, “Composition of the continental crust,” Treatise on Geochemistry, (Pergamon, Oxford, 2003), pp. 1–64.

    Google Scholar 

  84. A. F. Salazar-Naranjo and S. R. F. Vlach, “On the crystallization conditions of the Neoproterozoic, high-K calc-alkaline, Bragança Paulista-type magmatism, southern Brasília Orogen, SE Brazil,” Brazil. J. Geol. 48, 631–650 (2018).

    Google Scholar 

  85. Y. Sano, K. Terada, and T. Fukuoka, “High mass resolution ion microprobe analysis of rare earth elements in silicate glass apatite and zircon: lack of matrix dependency,” Chem. Geol. 184, 217‒230 (2002).

    Article  Google Scholar 

  86. L. Scharfenberg, S. Jandausch, L. Anetzberger, et al., “Differences in natural gamma radiation characteristics of Erinpura and Malani granites in NW India” J. Earth Syst. Sci. 128, 137 (2019).

    Article  Google Scholar 

  87. J. G. Schilling, PhD Thesis (Mass. Inst. Tech., USA, Cambridge MA, 1966).

  88. M. A. Shakoor, X. Yang, J. Deng, et al., “Early Neoproterozoic evolution of Southeast Pakistan: evidence from geochemistry, geochronology, and isotopic composition of the Nagarparkar Igneous Complex,” Int. Geol. Rev. 61, 1391‒1408 (2019).

    Article  Google Scholar 

  89. R. Sharma, PhD Thesis (Panjab University, Chandigrah, India, 1992).

  90. R. Sharma and N. Kumar, “Petrology and geochemistry of A-type granites from Khanak and Devsar areas of Bhiwani district, Southwestern Haryana,” J. Geol. Soc. India 90, 138‒146 (2017).

    Article  Google Scholar 

  91. R. Sharma, N. Kumar, and N. Kumar, “Signatures of high heat production and mineralization associated with plutonic and volcanic acidic rocks from Tosham Ring Complex, Southwestern Haryana, India,” Himalayan Geol. 40, 239‒247 (2019).

    Google Scholar 

  92. R. Sharma, N. Kumar, N. Kumar and A. K. Singh, “Petrogenesis and tectonic implications of anorogenic acid plutonic rocks of Southwestern Haryana of northwestern peninsular India,” Geochem. Int. 59, 66‒91 (2021).

    Article  Google Scholar 

  93. A. K. Singh and G. Vallinayagam, “Geochemistry and petrogenesis of anorogenic basic volcanic-plutonic rocks of the Kundal area, Malani Igneous Suite, western Rajasthan,” India. Proc. Indian Acad. Sci. (Earth Planet. Sci.) 113, 667‒681 (2004).

  94. A. K. Singh and G. Vallinayagam, “Radioactive element distribution and rare-metal mineralization in anorogenic acid volcano-plutonic rocks of the Neoproterozoic Malani Felsic Province, Western Peninsular India,” Jour. Geol. Soc. India 73, 837‒853 (2009).

    Article  Google Scholar 

  95. A. K. Singh, R. K. B. Singh, and G. Vallinayagam, “Anorogenic acid volcanic rocks in the Kundal area of the Malani Igneous Suite, Northwestern India: Geochemical and petrogenetic studies,” J. Asian Earth Sci. 27, 544‒557 (2006).

    Article  Google Scholar 

  96. L. G. Singh and G. Vallinayagam, “Petrological and geochemical constraints in the origin and associated mineralization of A-Type granite suite of the Dhiran Area, Northwestern Peninsular India,” J. Geosci. 2, 66‒80 (2012).

    Google Scholar 

  97. L. S. Singh and G. Vallinayagam, “Geochemistry and petrogenesis of acid volcano-plutonic rocks of the Siner area, Siwana Ring Complex, Northwestern Peninsular India,” J. Geol. Soc. India 82, 67‒79 (2013).

    Article  Google Scholar 

  98. T. W. Sisson, K. Ratajevski, W. B. Hankins, and A. F. Glazner, “Voluminous granitic magmas from common basaltic source,” Contrib. Mineral. Petrol. 148, 635–661 (2005).

    Article  Google Scholar 

  99. K. P. Skjerlie and A. D. Johnston, “Fluid–absent melting behavior of an F-rich tonalitic gneiss at mid-crustal pressures: implications for the generation of anorogenic granites,” J. Petrol. 34, 785–815 (1993).

    Article  Google Scholar 

  100. C. Sreejith and G. R. Ravindra Kumar, “Petrogenesis of high-K metagranites in the Kerala Khondalite Belt, southern India: a possible magmatic-arc link between India, Sri Lanka, and Madagascar,” J. Geodynam. 63, 69‒82 (2013).

    Article  Google Scholar 

  101. S. S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes,” Geol. Soc. London Spec. Publ. 42, 313–345 (1989).

    Article  Google Scholar 

  102. R. P. Taylor, D. F. Strong, and B. J. Fryer, “Volatile control of contrasting trace element distributions in peralkaline granitic and volcanic rocks,” Contrib. Mineral. Petrol. 77, 267‒271 (1981).

    Article  Google Scholar 

  103. C. P. Thornton and O. F. Tuttle, “Chemistry of igneous rocks. I. Differentiation index,” Am. J. Sci. 258, 664–684 (1960).

    Article  Google Scholar 

  104. T. H. Torsvik, L. M. Carter, L.D. Ashwal, S. K. Bhushan, M. K. Pandit, and B. Jamtveit, “Rodinia refined or obscured; Paleomagnetism of the Malani Igneous Suite (NW India),” Precambrian Res. 108, 319–333 (2001).

    Article  Google Scholar 

  105. S. P. Turner, J. D. Foden, and R. S. Morrison, “Derivation of some A-type magmas by fractionation of basaltic magma: an example from the Padthaway Ridge, south Australia,” Lithos 28, 151‒179 (1992).

    Article  Google Scholar 

  106. G. Vallinayagam, “A report on rare metals and rare earths in the Siwana Ring Complex, Rajasthan,” J. Appl. Geochem. 6, 387‒391 (2004).

    Google Scholar 

  107. G. Vallinayagam and L. G. Singh, “Radioactive heat producing felsic to intermediate volcano-plutonic rocks of Dhiran Area, Malani Igneous Suite, Western India,” J. Earth Sci. India 4, 68‒97 (2011).

    Google Scholar 

  108. P. Vidal, A. Cocherie, and P. Le Fort, “Geochemical investigations of the origin of the Manaslu leucogranite (Himalaya, Nepal),” Geochim. Cosmochim. Acta 46, 2279–2292 (1982).

    Article  Google Scholar 

  109. W. Wang, P. A. Cawood, M. F. Zhou, et al., “Low-δ18O rhyolites from the Malani Igneous Suite: A positive test for South China and NW India linkage in Rodinia,” Geophys. Res. 44, 298‒305 (2017).

    Google Scholar 

  110. P. C. Webb, A. G. Tindle, S. D. Barritt, et al., “Radiothermal granites of the United Kingdom: comparison of fractionation patterns and variation of heat production for selected granites,” In High Heat Production (HHP) Granites, Hydrothermal Circulation and Ore Genesis, Ed. by C. Halls (Institution of Mining and Metallurgy, London, 1985), pp. 409–424.

  111. J. B. Whalen, K. L. Currie, and B. W. Chappell, “A-type granites: Geochemical characteristics, discrimination and petrogenesis,” Contrib. Mineral. Petrol. 96, 407–419 (1987).

    Article  Google Scholar 

  112. M. T. D. Wingate, I. H. Campbell, W. Compston, and G. M. Gibson, “Ion microprobe U-Pb ages for Neoproterozoic basaltic magmatism in southcentral Australia and implications for the breakup of Rodinia,” Precambrian Res. 87, 135–159 (1998)

    Article  Google Scholar 

  113. F. Wu, D. Sun, H. Li, et al., “A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis,” Chem. Geol. 187, 143–173 (2002).

    Article  Google Scholar 

  114. G. Wu, Y. Xiao, J. He, et al., “Geochronology and geochemistry of the late Neoproterozoic A-type granitic clasts in the southwestern Tarim Craton: Petrogenesis and tectonic implications,” Int. Geol. Rev. 61, 280‒295 (2019).

    Article  Google Scholar 

  115. C. L. Zhang, Z-X. Li, X-H. Li, et al., “An early Paleoproterozoic high-K intrusive complex in southwestern Tarim Block, NW China: age, geochemistry, and tectonic implications,” Gondwana Res. 12, 101–112 (2007).

    Article  Google Scholar 

  116. S. Zhang, D. A. D. Evans, H. Li, H. Wu, G. Jiang, J. Dong, Q. Zhao, T. D. Raub, T. Yang, “Paleomagnetism of the late Cryogenian Nantuo Formation and paleogeographic implications for the South China Block,” J. Asian Earth Sci. 72, 164‒177 (2013).

    Article  Google Scholar 

  117. J.-H. Zhao, Q.-W. Li, W. Liu, et al., “Neoproterozoic magmatism in the western and northern margins of the Yangtze Block (South China) controlled by slab subduction and subduction-transform-edge-propagator,” Earth-Sci. Rev. 187, 1‒18 (2018).

    Article  Google Scholar 

  118. M. F. Zhou, Y. Ma, D. P. Yan, X. Xia, J. H. Zhao, M. S. Zhou, “The Yanbian terrane (southern Sichuan Province, SW China): A Neoproterozoic arc assemblage in the western margin of the Yangtze Block,” Precambrian Res. 144, 19‒38 (2006).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to express their thanks to Director, Dr. Kalachand Sain (Wadia Institute of Himalayan Geology, Dehradun, India) for their support. We are thankful to Dr. N.V. Chalapathi Rao (Banaras Hindu University, Varanasi, India) and Dr. Dinesh Pandit (Banaras Hindu University, Varanasi, India) for their assistance to carry out the EPMA analysis. We are also thankful to Dr. Naresh Kochhar (Emeritus professor, Punjab University, Chandigarh), Dr. Radhika Sharma (Guest Faculty, Kurukshetra University) and Dr. R. K. Bikramaditya Singh (Assistant professor, Banaras Hindu University, Varanasi, India) for their valuable suggestions. We would like to thank the three anonymous Reviewers for taking the time and effort necessary to review the manuscript. We sincerely appreciate all valuable comments and suggestions, which helped us to improve the quality of the manuscript. Great thanks go to Dr. Yuri A. Kostitsyn (Editor-in-Chief), Dr. Olga B. Vereina (Editor) and Dr. Tatiana Shishkina (Assistant Editor) of Journal “Geochemistry International” for handling the manuscript and meticulous encouragement.

Funding

The corresponding author wishes to acknowledge the financial support of the Junior Research Fellowship, University Grand Commission, New Delhi (India) to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Kumar.

Ethics declarations

The authors declare that they have no conflicts of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Kumar, N. & Singh, A.K. Neoproterozoic Felsic Volcano-plutonic Rocks, Tusham Ring Complex, Malani Igneous Suite, NW Indian Shield: Petrogenetic Modeling, Magmatic Source and Geodynamic Evolution. Geochem. Int. 61, 410–435 (2023). https://doi.org/10.1134/S0016702923040080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702923040080

Keywords:

Navigation