Skip to main content
Log in

Radioactive element distribution and rare-metal mineralization in anorogenic acid volcano-plutonic rocks of the Neoproterozoic Malani Felsic Province, western Peninsular India

  • Published:
Journal of the Geological Society of India

Abstract

The Anorogenic Malani Felsic Province (MFP) of western Peninsular India consists of peralkaline, metaluminous to mildly peraluminous A-type granites-acid volcanics with minor basic volcanics and dykes. The suite is bimodal in nature that characterized by volcano-plutonic ring structures and radial dykes. The granitoids of Siwana and Kundal areas of MFP are traversed by numerous quartz veins with fluoride, iron encrustations, druses and knots of pegmatite phases. Petrographically, they show cloudy, patchy perthitic textures; spherulite form of alkali amphibole and alkali pyroxenes; alteration of K-Na-feldspar to kaolin/sericite, magnetite to haematite; growth of granophyres/perthite/rapakivi like textures. They are enriched in SiO2, Na2O+K2O, Fe/Mg, Rb, Zr, Y, Ga, REE (except Eu) and depleted in MgO, CaO, Mg#, P, Ti, Sr, Ni, Cr, Co and V. Uniform REE patterns, parallel to sub-parallel, LREE enriched over HREE and prominent negative Eu-anomalies are the characteristics of these granitoids. Geochemical parameters satisfy the A-type nature of granitoids and crustal origin of these rocks. These granitoids are high heat producing granitoids because of their high content of radioactive elements (U, Th, K), and can be classified as granite (Type I) (avg. 7.18 μWm−3), rhyolite and trachyte (Type II) (avg. 4.47 μWm−3) and acid dyke (Type III) (avg. 14.53 μ Wm−3). The average total heat generation unit (HGU) of Type I (17.10 HGU), Type II (10.64 HGU) and Type III (35.31 HGU) are much higher than the average value of continental crust (3.8 HGU), which imply a possible linear relationship among the surface heat generations in the MFP. Field, petrography and whole rock geochemical characteristics suggest potentiality for rare metals and rare earth elements mineralization in the studied granitoids of the MFP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Rahman, A.M. and El-Kibbi, M.M. (2001) Anorogenic magmatism: chemical evolution of the Mount El-Sibai A-type complex (Egypt), and implications for the origin of within-plate felsic magmas. Geol. Mag., v.138(1), pp.67–85.

    Article  Google Scholar 

  • Ashwal, L.D., Morgan, P., Kelly, S.A. and Preicival, G.A. (1987) Heat production in an Archean crustal profile and implications for heat flow and mobilization of heat producing elements. Earth Planet. Sci. Lett., v.85, pp.439–450.

    Article  Google Scholar 

  • Bailey, D.K. (1969) The stability of acmite in the presence of H2O. Am. Jour. Sci., v.267-A, pp.1–16.

    Google Scholar 

  • Barros, C.E.M., Agnol, R.D., Barbey, P. and Boullier, A.M. (1997) Geochemistry of the Estrela granite complex, Carajas region, Brazil: an example of an Archean A-type granitoid. Jour. South Amer. Earth Sci., v.10(4), pp.321–330.

    Article  Google Scholar 

  • Baskar, R. and Kochhar, N. (2006) Titan-Aegirine from the peralkaline Siwana granite, western Rajasthan, India. Jour. Applied Geochemistry, v.8(2), pp.133–136.

    Google Scholar 

  • Baskar, R. and Sharma, S. (1994) An assessment of the rare metal potential of the granitoids of Siwana, Jalor, Jhunjhunu and Tosham, North Western Peninsular India. Curr. Sci., v.66(1), pp.67–69.

    Google Scholar 

  • Batchelor, R.A. and Bowden, P. (1985) Petrogenetic interpretation of granitoid rocks series. Chemical Geol., v.48, pp.43–55.

    Article  Google Scholar 

  • Bea, F. (1996) Residence of REE, Y, Th and U in granites and crustal protoliths implications for the chemistry of crustal melts. Jour. Petrol., v.37, pp.521–552.

    Article  Google Scholar 

  • Beus, A.A. and Grigorian, S.V. (1977) Geochemical exploration methods for mineral deposits. Applied Publishing, Wilmette, Illinois.

    Google Scholar 

  • Bhushan, S.K. (1988) Stratigraphic position of Marwar Supergroup, Western Rajasthan. In: Abstract volume of the National Seminar on Stratigraphic Boundary Problems in India, Jammu, pp. 5–6.

  • Bhushan, S.K. (1995) Late Proterozoic continental growth: Implications from geochemistry of acid magmatic events of West Indian craton, Rajasthan. Mem. Geol. Soc. India, no.34, pp.339–355.

  • Bhushan, S.K. (2000) Malani rhyolites: A review. Gondwana Res., v.3(1), pp.65–77.

    Article  Google Scholar 

  • Bhushan, S.K. and Chittora, V.K. (1999) Late Proterozoic bimodal volcanic assemblage of Siwana subsidence structure, Western Rajasthan, India. Jour. Geol. Soc. India, v.53, pp.433–452.

    Google Scholar 

  • Bhushan, S.K. and Khullar, V.K. (1998) Geochemistry and tectonic significance of dyke swarm in Malani Igneous Complex around Sankra, District Jaisalmer, Rajasthan. In: B.S. Paliwal (Ed.), The Indian Precambrian. Scientific Publisher, Jodhpur. pp.482–491.

    Google Scholar 

  • Birch (1954) Heat from Radioactivity. In: Nuclear Geology, John Wiley, New York, pp.148–174.

    Google Scholar 

  • Biste, M. (1979) Die Anwendung geochemischer Indikatoren auf die Zinn-Hoffigkeit herzynischer granite in sud-Sardinien. Berl. Geowiss. Abh., v.18, 1p.

  • Bonin, B. (1988) Peralkaline granites in Corsica: some petrological and geochemical constraints. Rendiconti Della Societa Italiana Di Mineralgia E Petrologia, v.43(2), pp.281–306.

    Google Scholar 

  • Bonin, B. (2007) A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos. v.97, pp.1–29.

    Article  Google Scholar 

  • Bowden, P. (1966) Zirconium in younger granites of Northern Nigeria. Geochim. Cosmochim. Acta, v.30, pp.985–993.

    Article  Google Scholar 

  • Brooks, C.K. (1970) The concentrations of zirconium and hafnium in some igneous and metamorphic rocks and minerals. Geochim. Cosmochim. Acta, v.34, pp.411–416.

    Article  Google Scholar 

  • Chattopadhyay, B., Mukhopadhyay, A.K., Singhal, R.K., Bhattacharjee, J. and Hore, M.K. (1982) Post Erinpura acid magmatism in Sirohi, Rajasthan and its bearing on tungsten mineralization, In: Metallogeny of Precambrian. IGCP 91, Geol. Surv. India, pp.115–132.

  • Chaudhary, A.K., Gopalan, K. and Sastry, C.A. (1984) Present status of geochronology of the Precambrian rocks of Rajasthan, Tectonophysics, pp.131–140.

  • Clemens, J.D., Holloway, J.R. and White, A.J.R. (1986) Origin of the A-type granite: experimental constraints. American Mineralogist, v. 71, pp.317–324.

    Google Scholar 

  • Collins, W.J., Beams, S.D., White, A.J.R. and Chappell, B.W. (1982) Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib. Mineral. Petrol., v.80, pp.189–200.

    Article  Google Scholar 

  • Creaser, R.A., Price, R.C. and Wormald, R.J. (1991) A-type granites revisited: Assessment of a residual source model. Geology, v.19, pp.163–166.

    Article  Google Scholar 

  • Dall’agnol, R. and Carvalho De Oliveira, D. (2007) Oxidized, magnetite-series, rapakivi-type granites of Carajás, Brazil: Implications for classification and petrogenesis of A-type granites, Lithos v.93, pp.215–233

    Article  Google Scholar 

  • Dhana Raju, R. (1995) Uranium exploration in the Proterozoic terrains of India: a petrometallographic study and implications on target selection. Exploration and Research for Atomic Minerals, v.8, pp.173–186.

    Google Scholar 

  • Dhana Raju, R., Singh, J.P. and Bhattacharya, T.K. (1983) A preliminary study on radioactive heat generation of some Precambrian granitic rocks of India. Indian Jour. Earth Sci., v.10(2), pp.112–119.

    Google Scholar 

  • Dhar, S. Frei, R., Kramers, J.D., Nagler, T.F. and Kochhar, N. (1996) Sr, Pb and Nd Isotope studies and their bearing on the petrogenesis of the Jalor and Siwana complexes, Rajasthan, India. Jour. Geol. Soc. India, v.48(2), pp.151–160.

    Google Scholar 

  • Dharma Rao, C.V. and Reddy, U.V.B. (2007) Petrology and geochemistry of paleoproterozoic A-type granite at Kanigiri in the Nellore-Khammam schist belt, Andhra Pradesh, India. Jour. Asian Earth Sci., v.30, pp.1–19

    Article  Google Scholar 

  • Donaldson, C.H. and Henderson, C.M.B. (1988) A new interpretation of round embayments in quartz crystals. Mineral Mag. v.52, pp.27–33.

    Article  Google Scholar 

  • Drysdall, A.R., Jackson, N.J., Ramsay, C.R., Douch, C.J. and Hackett, D. (1984) Rare element mineralisation related to Precambrian alkali granites in the Arabian shield. Econ. Geol., v.79, pp.1366–1377.

    Article  Google Scholar 

  • Eby, G.N. (1992) Chemical subdivision of A-type granitoids: petrogenesis and tectonic implications. Geology, v.20, pp.641–644.

    Article  Google Scholar 

  • Eby, G.N. and Kochhar, N. (1990) Geochemistry and petrogenesis of the Malani Igneous Suite, north Peninsular India. Jour. Geol. Soc. India, v.36(2), pp.109–130.

    Google Scholar 

  • Ekwere, S.J. (1985) Li, F and Rb contents and Ba/Rb and Rb/Sr ratio as indicators of post-magmatic alteration and mineralization in the granitic rocks of the Banks and Ririwai Younger Complexes, Northern Nigeria. Mineral. Deposita, v.20, pp.89–93.

    Article  Google Scholar 

  • Flinter, B.H., Hesp, W.R. and Rigby, D. (1972) Selected geochemical mineralogical and petrological features of granitoids of the new England complex, Australia and their relation to Sn, W, Mo and Cu mineralisation. Econ. Geol., v.67, pp.1241–1262.

    Article  Google Scholar 

  • Goodenough, K.M., Upton, B.G.J. and Ellam, R.M. (2000) Geochemical evolution of the Ivigtut granite, South Greenland: a fluorine-rich “A-type” intrusion. Lithos, v.51, pp.205–221.

    Article  Google Scholar 

  • Grooves, D.I. and MacCarthy, T.S. (1978) Fractional crystallization and origin of tin deposits in granitoids. Mineral. Deposita, v.13, pp.11–26.

    Article  Google Scholar 

  • Hollings, P., Fralick, P. and Kissin, S. (2004) Geochemistry and geodynamic implications of the Mesoproterozoic English Bay granite-rhyolite complex, Northwestern Ontario. Can. Jour. Earth Sci., v.41, pp.1329–1338.

    Article  Google Scholar 

  • Hutchison, C.S. (1977) Granite emplacement and tectonic subdivision of Peninsular Malaysia. Bull. Geol. Soc. Malaysia, v.9, pp.187–207.

    Google Scholar 

  • Imeokparia, E.G. (1985) Rare metal mineralisation in granitic rocks of the Tangalo anorogenic complex, northern Nigeria. Mineral. Deposita, v.20, pp.81–88.

    Article  Google Scholar 

  • Jain, R.S., Miglani, T.S., Kumar, S., Swarnkar, B.M. and Singh, R. (1996) Rare metal and rare earth rich peralkaline, agpaitic granitoids dykes of Siwana ring complex, District Barmer, Rajasthan. Curr. Sci., v.70, pp.854–858.

    Google Scholar 

  • Juniper, D.N. and Kleeman, J.D. (1979) Geochemical characterization of some tin-mineralizing granites of new South Wales. Jour. Geochemical Explor., v.11, pp.31–333.

    Google Scholar 

  • Khin Zaw. (1990) Geological, petrological and geochemical characteristics of granitoid rocks in Burma: with special reference to the associated W-Sn mineralization and their tectonic setting. Jour. Southeast Asian Earth Sci., v.4(4), pp.293–335.

    Article  Google Scholar 

  • King, P.L., White, A.J.R., Chappell, B.W. and Allen, C.M. (1997) Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia. Jour. Petrology, v.38, pp.371–391.

    Article  Google Scholar 

  • Kinnaird, J.A., Bowden, P., Ixer, R.A. and Odling, N.W.A. (1985a) Mineralogy, geochemistry, mineralization of the Ririwai complex, Northern Nigeria. Jour. African Sci., v.2(1/2), pp.185–222.

    Article  Google Scholar 

  • Kinnaird, J.A., Batchelor, R.A., Whittely, J.E. and Mackenzie, A.B. (1985b) Geochemistry, mineralization and hydrothermal alteration of the Nigerian high heat producing. In: High heat production (HHP) granites, hydrothermal alteration and ore genesis. Institute of Mining and Metallurgy, London. pp.169–199.

    Google Scholar 

  • Kochhar, N. (1984) Malani Igneous Suite: Hot spot magmatism and cratonisation of the northern part of the Indian Shield. Jour. Geol. Soc. India, v.25, pp.155–161.

    Google Scholar 

  • Kochhar, N. (1989) High heat producing granites of the Malani Igneous Suite, Northern Peninsular India. Indian Minerals, v.43, pp.339–346.

    Google Scholar 

  • Kochhar, N. (1992) Mineralisation associated with A-type Malani magmatism, North West Peninsular India. In: S.C. Sarkar, (Ed.) Metallogeny related to tectonics of the Proterozoic mobile belts. Oxford and IBH. Pub. Ltd., New Delhi, pp.209–224

    Google Scholar 

  • Kochhar, N. (2000) Attributes and significance of the A-type Malani magmatism, northwestern Peninsular India. In: M. Deb (Ed.). Crustal solution and metallogeny in the North western India shield. Narosa Publ. New Delhi, pp.158–188.

    Google Scholar 

  • Kochhar, N., Vallinayagam, G. and Gupta, L.N. (1991) Zircons from the granitic rocks of Malani Igneous Suite: Morphological and chemical studies. Jour. Geol. Soc. India, v.38, pp.561–576.

    Google Scholar 

  • Kovalenko, V.I., Tsaryeva, G.M., Goreglyad, A.V., Yarmolyuk, V.V., Troitsky, V.A., Herving, R.L. and Farmer, G.L. (1995) The peralkaline granite-related Khaldzan-Buregte rare metal (Zr, Nb, REE) deposit, western Mongolia. Econ. Geol., v.90, pp.530–547.

    Article  Google Scholar 

  • Kumral, M., Coban, H., Gedikoglu, A. and Kilinc. A. (2006) Petrology and geochemistry of augite trachytes and porphyritic trachytes from the Gölcük volcanic region, Isparta, SW Turkey: A case study, Jour. Asian Earth Sci., v.27, pp.707–716.

    Article  Google Scholar 

  • Le Maitre, R.W. (1989) A classification of igneous rocks and glossary of terms. Oxford, Blackwell, 193p.

  • Lenharo, S.L.R., Pollard, P.J. and Born, H. (2003) Petrology and textural evolution of granites associated with tin and raremetals mineralization at the Pitinga mine, Amazonas, Brazil. Lithos, v.66, pp.37–61.

    Article  Google Scholar 

  • Levinson, A.A. (1974) Introduction to Exploration Geochemistry. Applied Publishing Ltd. Wilmette, Illinois.

    Google Scholar 

  • Maniar, P.D. and Piccoli, P.M. (1989) Tectonic discrimination of granitoids. Geol. Soc. Amer. Bull., v.101, pp.635–643.

    Article  Google Scholar 

  • Martin, R.F. (2006) A-type granites of crustal origin ultimately result from open-system fenitization-type reactions in an extensional environment. Lithos, v.91, pp.125–136.

    Article  Google Scholar 

  • Masuda, A., Nakamura, N. and Tanaka, T. (1973) Fine structures of mutually normalised rare earth patterns of chondrites. Geochim. Cosmochim. Acta, v.37, pp.239–248.

    Article  Google Scholar 

  • Menuge, J.F., Brewer, T.S. and Seeger, C.M. (2002) Petrogenesis of metaluminous A-type rhyolite from the St. Francois Mountains, Missouri and Mesoproterozoic evolution of the southern Laurentian margin. Precambrian Res., v.113, pp.269–291.

    Article  Google Scholar 

  • Ovchinnikov, L.N. (1980) Deposits of lithophile rare metals. Nedra, Moscow, 559p.

    Google Scholar 

  • Pagel, M. (1982) The mineralogy and geochemistry of uranium, thorium and rare earth elements in two radioactive granites of the Vosges, France. Min. Magazine, v.46, pp.149–161.

    Article  Google Scholar 

  • Pareek, H.S. (1981) Petrochemistry and petrogenesis of the Malani Igneous Suite, India. Geol. Soc. Amer. Bull., v.92, pp.206–273.

    Article  Google Scholar 

  • Parsons, I. (1980) Alkali feldspar and Fe-Tin oxide exsolution textures as indicators of the distribution and subsolidus effects of magmatic “water” in the Klokken layered syenite intrusion, south Greenland. Trans. Roy. Soc. Edinburgh, Earth Sci. v.71, pp.1–12.

    Google Scholar 

  • Patino Douce (1997) Generation of metaluminous A-type granitoids by low-pressure melting of calc-alkaline granitoids. Geology, v.25, pp.743–746.

    Article  Google Scholar 

  • Pearce, J. A., Harris, N.B.W. and Tindle, A.G. (1984) Trace elements discrimination diagrams for the tectonic interpretation of granitic rocks. Jour. Petrology, v.25, pp.956–83.

    Google Scholar 

  • Pearce, J.A. and Norry, M.J. (1979) Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contrib. Mineral. Petrol., v.69, pp.38–47.

    Article  Google Scholar 

  • Peccerillo, A. and Taylor, S.R. (1976) Geochemistry of some calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib. Mineral. Petrol., v.58, pp.63–81.

    Article  Google Scholar 

  • Pitcher, W.S. (1983) Granite type and tectonic environment. In: K. Hsu (Ed.) Mountain Building processes, Academic Press, London, pp.19–40.

    Google Scholar 

  • Plant, J.A., O’Brien, C., Tarney, J. and Hurdlet, J. (1985) Geological criteria for the recognition of high heat production (HHP) granites. In: High heat production granites, hydrothermal alteration and ore genesis. Institute of Mining and Metallurgy, London, pp.263–286.

    Google Scholar 

  • Rathore, S.S., Venkatesan, T.R. and Srivastava, R.K. (1999) Rb-Sr isotope of Neoproterozoic (Malani Group) magmatism from southwest Rajasthan, India: Evidence of younger Pan-African thermal event by 40Ar-39Ar studies. Gondwana Res., v.2(2), pp.271–181.

    Article  Google Scholar 

  • Rogers, J.J.W. and Adams, J.A.S. (1969) Thorium In: K.H. Wedepohl, (Ed.), Handbook of Geochemistry. Springer-Verlag, Berlin, pp.11–14.

    Google Scholar 

  • Rogers, J.J.W. and Greenberg, J.K. (1981) Trace element in continental margin magmatism; Pt. III, Alkali granites and their relationship to cratonisation; summary. Geol. Soc. Amer. Bull., v.92, pp.6–9.

    Article  Google Scholar 

  • Roy, A.B. (2000) Tectonostratigraphic and petrological studies of the Precambrian rocks occurring between Ajmer and Bundi sector, Rajasthan-Geological input along DSS profile line. In: O.P. Varma and T.M. Mahadevan (Eds.), Research highlights in Earth System Science. DST’s spl. Vol.1, Indian Geological Cong. pp.27–47.

  • Rybach, L., Werner, D., Mueller, S. and Berset, G. (1977) Heat flow, heat production and crustal dynamics in the Central Alps, Switzerland, Tectonophysics, v. 41, pp.113–126.

    Article  Google Scholar 

  • Salvi, S. and Jones, A.E.W. (1990) The role of hydrothermal processes in granite hosted Zr, Y, REE deposit at strange Lake, Quebec, Labrado. Evidences from fluid inclusions. Geochem. Cosmochem. Acta., v.54(9), pp.2403–2418.

    Article  Google Scholar 

  • Salvi, S., Fontan, F., Monchoux, P., Williams-Jones. A.E. and Moine, B. (2000) Hydrothermal mobilization of high-field strength elements in alkaline igneous systems: Evidence from the Tamazeght Complex (Morocco). Econ. Geol., v.95, pp.559–576.

    Article  Google Scholar 

  • Schmitt, A.K., Trumbuli, R.B., Dulski, P. and Emmermann, R. (2002) Zr-Nb-REE mineralisation in peralkaline granites from the Amis Complex, Brandberg (Namibia): Evidence for magmatic pre-enrichment from melt inclusions. Econ. Geol., v.97, pp.399–413.

    Article  Google Scholar 

  • Sharma, R. (1994) High heat production (HHP) granites of Jhunjhunu area, Rajasthan, India. Bull. Indian Geologists’ Assoc., v.27, pp.55–61.

    Google Scholar 

  • Singh, A.K. and Vallinayagam, G. (2002) Geochemistry and petrogenesis of granite in Kundal area, Malani Igneous suite, Western Rajasthan. Jour. Geol. Soc. India, v.60, pp.183–192.

    Google Scholar 

  • Singh, A.K., Singh, R.K.B. and Vallinayagam, G. (2006) Anorogenic Acid Volcanic rocks in the Kundal area of the Malani Igneous Suite, Northwestern India: geochemical and petrogenetic studies. Jour. Asian Earth Sci., v.27, pp.544–557.

    Article  Google Scholar 

  • Smith, R.L. and Shaw, H.R. (1975) Igneous related thermal system: assessment of geothermal resources of United States. In: D.E. White and D.C. Williams, (Eds.), U.S. Geol. Surv., Washington, D.C. Circ.726, pp.58–83.

  • Somani, R.L. (2006) Evolution of Tin-Tungsten and Copper bearing hydrothermal solutions associated with Tosham Complex, Tosham, Bhiwani District, Haryana: A fluid inclusion study. Jour. Geol. Soc. India, v.67, pp.379–386.

    Google Scholar 

  • Stoney, M. (1981) Trachytic pyroclastic from Agua de Volcano, Sao Miquel Azores: evolution of a magma body over 4000 years. Contrib. Mineral. Petrol., v.12, pp.423–432.

    Google Scholar 

  • Sun, S.S. and McDonough, W.F. (1989) Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes. In: A.D. Saunders and M.J. Norry (Eds.), Magmatism in the ocean basins. Geol. Soc. London Spec. Publ., v.42, pp.313–345

  • Taylor, H.P.J. and Forster, R.W. (1974) Low O18 igneous rocks from the intrusive complexes of Skye, Mull and Ardnamurchan, western Scotland. Jour. Petrol., v.12, pp.465–498.

    Google Scholar 

  • Taylor, S.R. (1964) Trace element abundances and the chondritic earth model. Geochim. Cosmochim. Acta, v.28, pp.1989–1999.

    Article  Google Scholar 

  • Taylor, S.R. and McLennan, S.M. (1985) The continental crust: its composition and evolution. 312p, Blackwell, Oxford, UK

  • Thieblemont, D. (2000) Geochemical database for the Proterozoic magmatism of the Arabian-Nubian Shield. FinalReport, “Arabian-Nubian shield” project, BRGM pp.1–11, www.sgs.org.sa / GIS / geochemistry / texte-r.doc.

  • Thirupathi, P.V., Sudhakar, Ch., Krishna, K.V.G. and Dhana Raju, R. (1996) Petrology and geochemistry of the proterozoic A-type granite of Kanigiri, Prakasam district, Andhra Pradesh: implications for rare metal mineralization. Exploration and Research for Atomic Minerals, v.9, pp.61–72.

    Google Scholar 

  • Torsvik, T.H., Carter, L.M., Ashwal, L.D., Bhushan, S.K., Pandit, M.K. and Jamtveit, B. (2001) Rodinia redefined or obscured: Palaeomagmatism of the Malani Igneous Suite (NW India), Precambrian Res., v.108, pp.319–333.

    Article  Google Scholar 

  • Vallinayagam, G. (1997) Mineral Chemistry of Siwana Ring Complex, W. Rajasthan, India. Indian Mineralogist, v.31, pp.37–47.

    Google Scholar 

  • Vallinayagam, G. (1998) Rare metal bearing and barren distinction of alkali granites, Piplun area, Siwana ring complex, Rajastha India: petrological and geochemical evidences. In: B.S. Paliwal, (Ed.) The Indian Precambrian, Scientific Publisher, Jodhpur, pp. 492–501.

    Google Scholar 

  • Vallinayagam, G. (2004a) A report on rare metals and rare earths in the Siwana ring complex, Rajasthan. Jour. Applied Geochemistry, v.6(2), pp.387–391.

    Google Scholar 

  • Vallinayagam, G. (2004b) Peralkaline-Peraluminous A-type rhyolites, Siwana ring complex, Northwestern India: petrogenetic modeling and tectonic implication. Jour. Geol. Soc. India, v.64, pp.336–344.

    Google Scholar 

  • Vallinayagam, G. and Kochhar, N. (1998) Geochemical characterization and petrogenesis of A-type granites and the associated acid volcanics of the Siwana ring complex. Northern Peninsular, India. In: B.S. Paliwal (Ed.), The Indian Precambrian. Scientific Publisher, Jodhpur. pp. 460–481

    Google Scholar 

  • Vallinayagam, G. (1999) Nb, Zr, REE rich acid dyke rocks from the Piplun area of Siwana Ring Complex, Western Rajasthan, India. In: B.S. Paliwal (Ed.), The Indian Precambrian. Scientific Publisher, Jodhpur. pp.94–102.

    Google Scholar 

  • Wesserburg, G.G. (1964) Relative contribution of U, Th and K to heat production in the Earth’s Crust. Science, v.143, pp.465–467.

    Article  Google Scholar 

  • Whalen, J.B., Currie, K.L. and Chappell, B.W. (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol., v.95, pp. 407–419.

    Article  Google Scholar 

  • Yund, R.A. and Ackermand, D. (1979) Development of perthite microstructures in the Strom King granites, New York, Contrib, Mineral Petrol., v.70, pp.273–280.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Krishnakanta Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnakanta Singh, A., Vallinayagam, G. Radioactive element distribution and rare-metal mineralization in anorogenic acid volcano-plutonic rocks of the Neoproterozoic Malani Felsic Province, western Peninsular India. J Geol Soc India 73, 837–853 (2009). https://doi.org/10.1007/s12594-009-0067-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-009-0067-z

Keywords

Navigation