Skip to main content
Log in

SPINMELT-2.0: Simulation of spinel–melt equilibrium in basaltic systems under pressures up to 15 kbar: I. model formulation, calibration, and tests

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The paper presents results of testing currently used models proposed to describe Cr-spinel–melt equilibrium: models of the MELTS family by M.S. Ghiorso with colleagues, the SPINMELT program by A.A. Ariskin and G.S. Nikolaev, and the “MELT–CHROMITE spinel calculator” by А.А. Pustovetov and R.L. Roeder. The new calibration of the SPINMELT model presented in this publication enables calculating a sixcomponent (Mg, Fe2+, Cr, Al, Fe3+, and Ti) composition of Cr-spinel and the \(T - {f_{{o_2}}}\) parameters of its stability on the liquidus of basaltic melts under pressures up to 15 kbar. The model is based on results of 392 runs from 43 experimental studies, including systems of normal alkalinity at \({f_{{o_2}}}\) ≤ QFM + 2. The experimental dataset (which was extended compared to that used for the previous calibration) allowed us not only to estimate the pressure effect, but also apply the model to aluminous and hydrous systems. Tests of the SPINMELT-2.0 model show that the errors of the calculated temperature of the spinel–melt equilibrium increase with pressure from 16°C at 1 atm to 50°C at 15 kbar. Experimental spinel compositions are reproduced by the model accurate to < 3 at % Al and Cr, and no worse 1 at % for the other cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • R. R. Almeev, F. Holtz, J. Koepke, F. Parat, and R. E. Botcharnikov, “The effect of H2O on olivine crystallization in MORB: Experimental calibration at 200 MPa,” Am. Mineral. 92 (4), 670–674 (2007).

    Article  Google Scholar 

  • R. R. Almeev, F. Holtz, J. Koepke, and F. Parat, “Experimental calibration of the effect of H2O on plagioclase crystallization in basaltic melt at 200 MPa,” Am. Mineral. 97 (7), 1234–1240 (2012).

    Article  Google Scholar 

  • A. A. Ariskin, and G. S. Barmina, Modeling Phase Equilibria during the Crystallization of Basaltic Magmas (Nauka-Interperiodika, Moscow, 2000) [in Russian].

    Google Scholar 

  • A. A. Ariskin and G. S. Barmina, “COMAGMAT: development of a magma crystallization model and its petrological applications,” Geochem. Int. 42(Suppl.1), S1–S157 (2004).

    Google Scholar 

  • A. A. Ariskin and G. S. Nikolaev, “An empirical model for the calculation of spinel–melt equilibrium in mafic igneous systems at atmospheric pressure: I. Chromian spinels,” Contrib. Mineral. Petrol. 123, 282–292 (1996).

    Article  Google Scholar 

  • A. A. Ariskin, G. S. Barmina, S. S. Meshalkin, G. S. Nikolaev, and R. R. Almeev, “INFOREX-3.0: a database on experimental phase equilibria in igneous rocks and synthetic systems. II. Data description and petrological applications,” Comp. Geosci. 22, 1073–1082 (1996).

    Article  Google Scholar 

  • A. A. Ariskin, S. S. Meshalkin, R. R. Almeev, G. S. Barmina, and G. S. Nikolaev, “INFOREX information retrieval system: analysis and processing of experimental data on phase equilibria in igneous rocks,” Petrology 5 (1), 28–36 (1997).

    Google Scholar 

  • A. A. Ariskin, M. I. Petaev, A. A. Borisov, and G. S. Barmina, “METEOMOD: A numerical model for the calculation of melting-crystallization relationships in meteoritic igneous systems,” Meteorit. Planet. Sci. 32, 123–133 (1997).

    Article  Google Scholar 

  • N. S. Aryaeva, E. V. Koptev-Dvornikov and D. A. Bychkov, “Liquidus thermobarometer for chromite–melt equi librium modeling: development and verification,” Moscow Univ. Geol. Bull. 71 (4), 337–346 (2016).

    Article  Google Scholar 

  • M. B. Baker and E. M. Stolper, “Determining the composition of high-pressure mantle melts using the diamond aggregates,” Geochim. Cosmochim. Acta 58 (13), 2811–2827 (1994).

    Article  Google Scholar 

  • C. Ballhaus, R. F. Berry, and D. H. Green, “High pressure experimental calibration of the olivine–orthopyroxene–spinel oxygen geobarometer: implications for the oxidation state of the upper mantle,” Contrib. Mineral. Petrol. 107 (1), 27–40 (1994). (Erratum: Contrib. Mineral. Petrol. 118 (1), 109 (1991)

    Article  Google Scholar 

  • S. J. Barnes, “The distribution of chromium among orthopyroxene, spinel and silicate liquid at atmospheric pressure,” Geochim. Cosmochim. Acta 50 (9), 1889–1909 (1986).

    Article  Google Scholar 

  • S. J. Barnes and P. L. Roeder, “The range of spinel compositions in terrestrial mafic and ultramafic rocks,” J. Petrol. 4 (12), 2279–2302 (2001).

    Article  Google Scholar 

  • K. S. Bartels, R. J. Kinzler, and T. L. Grove, “High pressure phase relations of primitive high-alumina basalts from Medicine Lake volcano, northern California,” Contrib. Mineral. Petrol. 108 (3), 253–270 (1991).

    Article  Google Scholar 

  • P. Beattie, “Olivine–melt and orthopyroxene–melt equilibria,” Contrib. Mineral. Petrol. 115, 103–111 (1993).

    Article  Google Scholar 

  • C. M. Bertka and J. R. Holloway, “Anhydrous partial melting of an iron-rich mantle: I. Subsolidus phase assemblages and partial melting phase relations at 10 to 30 kbar,” Contrib. Mineral. Petrol. 115, 313–322 (1994a).

    Article  Google Scholar 

  • C. M. Bertka and J. R. Holloway, “Anhydrous partial melting of an iron-rich mantle: II. Primary melt compositions at 15 kbar,” Contrib. Mineral. Petrol. 115, 323–330 (1994b).

    Article  Google Scholar 

  • J. Blundy and B. Wood, “Partitioning of trace elements between crystals and melts,” Earth Planet. Sci. Lett. 210, 383–397 (2003).

    Article  Google Scholar 

  • L. V. Danyushevsky, “The effect of small amounts of H2O on crystallization of mid-ocean ridge and backarc basin magmas, J. Volcanol. Geotherm. Res. 110 (3–4), 265–280 (2001).

    Article  Google Scholar 

  • X. Duan, “A general model for predicting the solubility behavior of H2O–CO2 fluids in silicate melts over a wide range of pressure, temperature and compositions,” Geochim. Cosmochim. Acta 125, 582–609 (2014).

    Article  Google Scholar 

  • B. W. Evans and B. R. Frost, “Chrome spinel in progressive metamorphism—a preliminary analysis,” Geochim. Cosmochim. Acta 39, 959–972 (1975).

    Article  Google Scholar 

  • T. J. Falloon and L.V. Danyushevsky, “Melting of refractory mantle at 1.5, 2 and 2.5 GPa under anhydrous and H2O-undersaturated conditions: Implications for the petrogenesis of high-Ca boninites and the influence of subduction components on mantle melting,” J. Petrol. 41, 257–283 (2000).

    Article  Google Scholar 

  • T. J. Falloon and D. H. Green, “Anhydrous partial melting of MORB pyrolite and other peridotite compositions at 10 kbar: implications for the origin of primitive MORB glasses,” Mineral. Petrol. 37 (3–4), 181–219 (1987).

    Article  Google Scholar 

  • T. J. Falloon, D. H. Green, H. St. C. O’Neill, and W. O. Hibberson, “Experimental tests of low degree peridotite partial melt compositions: implications for the nature of anhydrous near-solidus peridotite melts at 1 GPa,” Earth Planet. Sci. Lett. 152 (1–4), 149–162 (1997).

    Article  Google Scholar 

  • T. J. Falloon, D. H. Green, A. L. Jacques, and J. W. Hawkins, “Refractory magmas in back-arc basin settings— experimental constraints on the petrogenesis of a Lau Basin example,” J. Petrol. 40 (2), 255–277 (1999).

    Article  Google Scholar 

  • T. J. Falloon, D. H. Green, L. V. Danyushevsky, and U. H. Faul “Peridotite Melting at 1.0 and 1.5 GPa: An experimental evaluation of techniques using diamond aggregates and mineral mixes for determination of near-solidus melts,” J. Petrol. 40 (9), 1343–1375 (1999).

    Article  Google Scholar 

  • T. J. Falloon, L. V. Danyushevsky, and D. H. Green, “Peridotite melting at 1 GPa: reversal experiments on partial melt compositions produced by peridotite–basalt sandwich experiments,” J. Petrol. 42 (12), 2363–2390 (2001).

    Article  Google Scholar 

  • S. T. Feig, J. Koepke, and J. E. Snow, “Effect of oxygen fugacity and water on phase equilibria of a hydrous tholeiitic basalt,” Contrib. Mineral. Petrol. 160 (4), 551–568 (2010). doi 10.1007/s00410-010-0493-3

    Article  Google Scholar 

  • M. R. Fisk and A. E. Bence, “Experimental crystallization of chrome spinel in FAMOUS Basalt 527-1-1,” Earth Planet Sci. Lett. 48(1), 111–123 (1980).

    Article  Google Scholar 

  • L. M. Forsythe and M. R. Fisk, “Comparison of experimentally crystallized and natural spinels from leg 135,” Proc. Ocean Drill. Progr., Sci. Res. 135, 585–594 (1994).

    Google Scholar 

  • G. A. Gaetani and T. L. Grove, “The influence of water on melting of mantle peridotite,” Contrib. Mineral. Petrol. 131, 323–346 (1998).

    Article  Google Scholar 

  • G. A. Gaetani, T. L. Grove, and W. B. Bryan, “Experimental phase relations of basaltic andesite from hole 839B under hydrous and anhydrous conditions,” Proc. Ocean Drill. Progr., Sci. Res. 135, 557–563 (1994).

    Google Scholar 

  • M. S. Ghiorso and R. O. Sack, “Chemical mass transfer in magmatic process IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures,” Contrib. Mineral. Petrol. 119, 197–212 (1995).

    Article  Google Scholar 

  • M. S. Ghiorso, M. M. Hirschmann, P. W. Reiners, and V. C. Kress III, “The pMELTS: A revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa,” Geochem. Geophys. Geosyst. 3 (5) (2002), doi 10.1029/2001GC000217

    Google Scholar 

  • T. L. Grove and W. B. Bryan, “Fractionation of pyroxenephyric MORB at low pressure: an experimental study,” Contrib. Mineral. Petrol. 84(4), 293–309 (1983).

    Article  Google Scholar 

  • T. N. Irvine, “Chromian spinel as a petrogenetic indicator. Part I. Theory,” Can. J. Earth Sci. 2 (6), 648–672 (1965).

    Article  Google Scholar 

  • S. Jakobsson and N. Oskarsson, “The system C–O in equilibrium with graphite at high pressure and temperature: an experimental study,” Geochim. Cosmochim. Acta 58 (1), 9–17 (1994).

    Article  Google Scholar 

  • R. J. Kinzler, “Melting of mantle peridotite at pressures approaching the spinel to garnet transition: application to mid-ocean ridge basalt petrogenesis,” J. Geophys. Res. 102 (B1), 853–874 (1997).

    Article  Google Scholar 

  • R. J. Kinzler and T. L. Grove, “Primary magmas of midocean ridge basalts: I. Experiments and methods,” J. Geophys. Res. 97B (5), 6885–6906 (1992).

    Article  Google Scholar 

  • E. J. Kohut and R. L. Nielsen, “Low-pressure phase equilibria of anhydrous anorthite-bearing mafic magmas,” Geochem. Geophys. Geosyst., 4 (7) (2003), doi 10.1029/2002GC000451

    Google Scholar 

  • D. Laporte, M. J. Toplis, M. Seyler, and J.-L. Devidal, “A new experimental technique for extracting liquids from peridotite at very low degrees of melting: application to partial melting of depleted peridotite,” Contrib. Mineral. Petrol. 146, 463–484 (2004).

    Article  Google Scholar 

  • J. Longhi, J. V. Auwera, M. S. Fram, and J.-C. Duchesne, “Some phase equilibrium constraints on the origin of Proterozoic (massif) anorthosites and related rocks,” J. Petrol. 40 (2), 339–362 (1999).

    Article  Google Scholar 

  • J. Longhi, “Liquidus equilibria of some primary lunar and terrestrial melts in the garnet stability field,” Geochim. Cosmochim. Acta 59 (11), 2375–2386 (1995).

    Article  Google Scholar 

  • C. Maurel and P. Maurel, “Étude expérimentale de la distribution de l’aluminium enter bain silicate basique et spinelle chromifère. Implications pétrogenetiques: teneur en chrome des spinelles,” Bull. Minéral. 105, 197–202 (1982).

    Google Scholar 

  • E. Médard, C. A. McCammon, J. A. Barr, and T. L. Grove, “Oxygen fugacity, temperature reproducibility, and H2O contents of nominally anhydrous piston–cylinder experiments using graphite capsules,” Am. Mineral. 93 (11–12), 1838–1844 (2008).

    Article  Google Scholar 

  • G. Moore and I. S. E. Carmichael, “The hydrous phase equilibria (to 3 kbar) of an andesite and basaltic andesite from western Mexico: constraints on water content and conditions of phenocryst growth,” Contrib. Mineral. Petrol. 130 (3–4), 304–319 (1998).

    Article  Google Scholar 

  • B. W. Murck and I. H. Campbell, “The effects of temperature, oxygen fugacity and melt composition on the behaviour of chromium in basic and ultrabasic melts,” Geochim. Cosmochim. Acta 50 (9), 1871–1887 (1986).

    Article  Google Scholar 

  • B. O. Mysen and P. Richet, Silicate Glasses and Melts, Properties and Structure (Elsevier, Amsterdam, 2005).

    Google Scholar 

  • R. L. Nielsen and M. J. Drake, “Pyroxene–melt equilibria,” Geochim. Cosmochim. Acta 43(8), 1259–1272 (1979).

    Article  Google Scholar 

  • R. L. Nielsen, and M. A. Dungan, “Low-pressure mineral–melt equilibria in natural anhydrous mafic system,” Contrib. Mineral. Petrol. 84, 310–326 (1983). doi 10.1007/BF01160284

    Article  Google Scholar 

  • G. S. Nikolaev, A. A. Borisov, and A. A. Ariskin, “Calculation of the ferric–ferrous ratio in magmatic melts: testing and additional calibration of empirical equations for various magmatic series,” Geochem. Int. 34 (8), 713–722 (1996).

    Google Scholar 

  • G. S. Nikolaev, A. A. Ariskin, G. S. Barmina, M. A. Nazarov and R. R. Almeev, “Test of the Ballhaus–Berry–Green Ol–Opx–Sp oxybarometer and calibration of a new equation for estimating the redox state of melts saturated with olivine and spinel,” Geochem. Int. 54 (4), 301–320 (2016).

    Article  Google Scholar 

  • H. St. C. O’Neill and V. J. Wall, “The olivine–orthopyroxene–spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the Earth’s upper mantle,” J. Petrol. 28, 1169–1191 (1987).

    Article  Google Scholar 

  • H. St. C. O’Neill, “The quartz–fayalite–iron and quartz–fayalite–magnetite equilibria and the free energies of formation of fayalite (Fe2SiO4) and magnetite (Fe3O4),” Am. Mineral. 72, 67–75 (1987).

    Google Scholar 

  • S. W. Parman and T. L. Grove, “Harzburgite melting with and without H2O: experimental data and predictive modeling,” J. Geophys. Res. 109 (B02201), (2004), doi 10.1029/2003/JB0025666

    Google Scholar 

  • M. Pichavant, B. O. Mysen, and R. MacDonald, “Source and H2O content of high-MgO magmas in island arc settings: An experimental study of a primitive calc-alkaline basalt from St. Vincent, Lesser Antilles arc,” Geochim. Cosmochim. Acta 66 (12), 2193–2209 (2002).

    Article  Google Scholar 

  • A. D. Pickering-Witter and J. Johnston, “The effects of variable bulk composition on the melting systematics of fertile peridotitic assemblages,” Contrib. Mineral. Petrol. 140 (2), 190–211 (2000).

    Article  Google Scholar 

  • G. V. Ponomarev and M. Yu. Puzankov, Iron and Magnesium Distribution in the Melt–Spinel–Olivine System: Evidence from Experimental Data. Geological Implications, (KGPU, Petropavlovsk-Kamchatskii, 2002) [in Russian].

    Google Scholar 

  • A. A. Pustovetov and R. L. Roeder, “Numerical modeling of major element distribution between chromian spinel and basaltic melt, with application to chromian spinel in MORBs,” Contrib. Mineral. Petrol. 142 (1), 58–71 (2001).

    Article  Google Scholar 

  • A. E. Ringwood, “Limits on the bulk composition of the Moon,” Icarus 28 (3), 325–349 (1976).

    Article  Google Scholar 

  • J. A. C. Robinson, B. J. Wood, and J. D. Blundy, “The beginning of melting of fertile and depleted peridotite at 1.5 GPa,” Earth Planet. Sci. Lett. 155 (1–2), 97–111 (1998).

    Article  Google Scholar 

  • P. L. Roeder and I. Reynolds, “Crystallization of chromite and chromium solubility in basaltic melts,” J. Petrol. 32(5), 909–934 (1991).

    Article  Google Scholar 

  • R. O. Sack and M. S. Ghiorso, “Chromian spinels as petrogenetic indicators: Thermodynamics and petrological applications,” Am. Mineral. 76, 827–847 (1991).

    Google Scholar 

  • R. O. Sack, “Spinels as petrogenetic indicators: activity–composition relations at low pressure,” Contrib. Mineral. Petrol. 79, 169–186 (1982).

    Article  Google Scholar 

  • B. E. Schwab and A. D. Johnston, “Melting systematics of modally variable, compositionally intermediate peridotites and the effects of mineral fertility,” J. Petrol. 42(10), 1789–1811 (2001).

    Article  Google Scholar 

  • T. W. Sisson and T. L. Grove, “Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism,” Contrib. Mineral. Petrol. 113 (2), 143–166 (1993).

    Article  Google Scholar 

  • T. W. Sisson and T. L. Grove, “Temperatures and H2O contents of low-MgO high-alumina basalts,” Contrib. Mineral. Petrol. 113 (2), 167–184 (1993).

    Article  Google Scholar 

  • E. Takahashi, “Melting of a dry peridotite KLB-1 up to 14 GPa: implications on the origin of peridotitic upper mantle,” J. Geophys. Res. 91B (9), 9367–9382 (1986).

    Article  Google Scholar 

  • P. Thy, G. E. Lofgren, and P. Imsland, “Melting relations and the evolution of the Jan Mayen magma system,” J. Petrol. 32 (2), 303–332 (1991).

    Article  Google Scholar 

  • P. Thy, “Low-pressure experimental constraints on the evolution of komatiites,” J. Petrol. 36(6), 1529–1548 (1995a).

    Google Scholar 

  • P. Thy, “Experimental constraints on the evolution of transitional and mildly alkalic basalts: crystallization of spinel,” Lithos 36, 103–114 (1995b).

    Article  Google Scholar 

  • P. Thy, “High and low pressure phase equilibria of a mildly alkalic lava from the 1965 Surtsey eruption: experimental results,” Lithos 26, 223–243 (1991).

    Article  Google Scholar 

  • D. R. Tormey, T. L. Grove, and W. B. Bryan, “Experimental petrology of normal MORB near the Kane Fracture Zone: 22–25°N, Mid-Atlantic Ridge,” Contrib. Mineral. Petrol. 96 (2), 121–139 (1987).

    Article  Google Scholar 

  • S. Villiger, P. Ulmer, O. Muntener, and A. B. Thompson, “The liquid line of descent of anhydrous, mantlederived, tholeiitic liquids by fractional and equilibrium crystallization—an experimental study at 1.0 GPa,” J. Petrol. 45 (12), 2369–2388 (2004).

    Article  Google Scholar 

  • S. Villiger, P. Ulmer, and O. Muntener, “Equilibrium and fractional crystallization experiments at 0.7 GPa: the effect of pressure on phase relations and liquid compositions of tholeiitic magmas,” J. Petrol. 48 (1), 159–184 (2007).

    Article  Google Scholar 

  • T. P. Wagner, J. M. Donnelly-Nolan, and T. L. Grove, “Evidence of hydrous differentiation and crystal accumulation in the low-MgO, high-Al2O3 Lake basalt from Medicine Lake volcano, California,” Contrib. Mineral. Petrol. 121(2), 201–216 (1995).

    Article  Google Scholar 

  • L. E. Wasylenki, M. B. Baker, A. J. R. Kent, and E. M. Stolper, “Near-solidus melting of the shallow upper mantle: partial melting experiments on depleted peridotite,” J. Petrol. 44 (7), 1163–1191 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. S. Nikolaev or A. A. Ariskin.

Additional information

Original Russian Text © G.S. Nikolaev, A.A. Ariskin, G.S. Barmina, 2018, published in Geokhimiya, 2018, No. 1, pp. 28–49.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaev, G.S., Ariskin, A.A. & Barmina, G.S. SPINMELT-2.0: Simulation of spinel–melt equilibrium in basaltic systems under pressures up to 15 kbar: I. model formulation, calibration, and tests. Geochem. Int. 56, 24–45 (2018). https://doi.org/10.1134/S0016702918010044

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702918010044

Keywords

Navigation