Skip to main content
Log in

Anhydrous partial melting of MORB pyrolite and other peridotite compositions at 10 kbar: Implications for the origin of primitive MORB glasses

Wasserfreie partielle aufschmelzung von MORB pyrolit und andere peridotit-zusammensetzungen bei 10 kbar: bedeutung für die entstehung primitiver MORB gläser

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

Anhydrous partial melting experiments on four peridotite compositions have been conducted at 10 kbar providing a relatively internally consistent set of data on the character of primary melts expected from the oceanic upper mantle in the mid-ocean ridge setting. The four peridotite compositions are: “MORB pyrolite” (considered to be suitable for the production of primitive (Mg#⩾0.68) MORB glasses at 10 kbar), “Hawaiian pyrolite” (representative of “enriched” upper mantle), Tinaquillo lherzolite (representative of more “depleted” upper mantle), and the spinel lherzolite KLB-1 which is a suitable composition for the production of primitive MORB glasses. The equilibrium liquids were determined by “sandwich” experiments. The primitive MORB glass DSDP 3-18-7-1 was used in experiments using MORB pyrolite and KLB-1, while a calculated 10 kbar liquid composition fromJaques andGreen (1980) was used in experiments with Hawaiian pyrolite and Tinaquillo lherzolite. The results of the experiments are used to test a 10 kbar melt model for the generation of primitive MORB glasses, which are parental magmas to typical MORB compositions. The melt compositions from the four peridotites studied are significantly different from primitive MORB glasses in major element chemistry and plot away from the field of primitive MORB glasses in the CIPW molecular normative “Basalt tetrahedron”. The results indicate that primitive MORB glasses are derivative compositions lying on olivine fractionation lines from picritic parents, which themselves are primary magmas at pressures greater than 10 kbar. The results of this study are integrated with previous 10 kbar experimental studies.

Zusammenfassung

Vier Peridotit-Zusammensetzungen wurden bei 10 kbar unter wasserfreien Bedingungen partiell aufgeschmolzen, und die Ergebnisse mit möglichen primitiven Schmelzen Mittel-Ozeanischer Rücken verglichen.

Die folgenden perioditischen Zusammensetzungen wurden untersucht: „MORB pyrolite” [mögliche Ausgangszusammensetzung für primitive (Mg# > 0.68) MORB-Glaszusammensetzungen bei 10 kbar], „Hawaiian pyrolite” (representativ für ’angereicherten’ Oberen Mantel); „Tinaquillo lherzolite” (representativ für verarmten' Oberen Mantel) und spinel lherzolite, KLB-1 (im Gleichgewicht mit primitiver MORB-Glaszusammensetzung). Die Schmelzen im Gleichgewicht mit diesen Ausgangszusammensetzungen wurden mittels „Sandwich-Experimenten” ermittelt.

Die primitive MORB-Glaszusammensetzung DSDP 3-18-7-1 wurde mit MORB pyrolite und KLB-1 equilibriert, während eine Modell-Zusammensetzung vonJaques and Green (1980) in Verbindung mit „Hawaiian pyrolite” und „Tinaquillo lherzolite” vermischt wurde. Die Resultate der Experimente werden mit einem 10 kbar Aufschmelzungsmodell zur Entstehung primitiver MORB-Gläser verglichen. Die Schmelzen im Gleichgewicht mit den vier Peridotit-Ausgangszusammensetzungen unterscheiden sich wesentlich von primitiven MORB-Gläsern, sowohl hinsichtlich ihrer Hauptelemente als auch ihrer Plot-Parameter im Basalttetraeder. Primitive MORB-Glaszusammensetzungen stellen keine primären Schmelzen dar, sondern sind durch Olivinfraktionierung von primitiven Magmen abzuleiten. Die Resultate dieser Untersuchungen werden mit früheren 10 kbar Experimenten verglichen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allegre CJ, Treuil M, Minster J, Minster B, Albarede F (1977) Systematic use of trace elements in igneous process. Part I: Fractional crystallization processes in volcanic suites. Contrib Min Petrol 60: 57–65

    Google Scholar 

  • Autio LK, Rhodes JM (1984) Costa Rica rift zone basalts: geochemical and experimental data from a possible example of multistage melting. In:Cann JR, Langsetz MG, Honnorez J, von Herzen RP, White SM (eds) Initial reports of the deep sea drilling project, vol 69, Washington (U.S. Government Printing Office), pp 729–745

    Google Scholar 

  • Barker SE, Kudo AM, Keil K (1983) Mineral chemistry of basalts from Holes 483 and 483B. In:Lewis BTR, Robinson P, et al (eds) Initial reports of the deep sea drilling project, vol 65, Washington (U.S. Government Printing Office), pp635–642

    Google Scholar 

  • Basaltic Volcanism Study Project (1981) Basaltic volcanism on the terrestrial planets. Pergamon Press, New York, 1286 pp.

    Google Scholar 

  • Bender JF, Hodges FN, Bence AE (1978) Petrogenesis of basalts from the project FAMOUS area: experimental study from 0-15 kbars. Earth Planet Sci Lett 41: 277–302

    Google Scholar 

  • Bryan WB (1979) Regional variation and petrogenesis of basalt glasses from the FAMOUS area, Mid-Atlantic ridge. J Petrol 20: 293–325

    Google Scholar 

  • —— Moore JG (1977) Compositional variations of young basalts in the Mid-Atlantic ridge rift valley near lat 36° 49' N. Geol Soc Am Bull 88: 556–570

    Google Scholar 

  • —— (1981) Compositional variation in normal MORB from 22°–25° N: Mid-Atlantic ridge and Kane fracture zone. J Geophys Res 86: 11,815–11,836

    Google Scholar 

  • Cameron WE (1985) Petrology and origin of primitive lavas from the Troodos ophiolite, Cyprus. Contrib Min Petrol 89: 239–255

    Google Scholar 

  • Christie DM, Carmichael ISE, Langmuir CH (1986) Oxidation states of mid-ocean ridge basalt glasses. Earth Planet Sci Lett 79: 397–411

    Google Scholar 

  • Dick HJB, Fisher RL (1984) Mineralogic studies of the residues of mantle melting: abyssal and alpine type-peridotites. In:Kornprobst J (ed) Kimberlites II. The mantle and crustmantle relationships. Elsevier, Amsterdam, pp 295–308

    Google Scholar 

  • Donaldson CH, Brown RW (1977) Refractory megacrysts and magnesium rich melt inclusions within spinel in oceanic tholeiites: indicators of magma mixing and parental magma composition. Earth Planet Sci Lett 37: 81–89

    Google Scholar 

  • Duncan RA, Green DH (1980) Role of multistage melting in the formation of oceanic crust. Geology 8: 22–26

    Google Scholar 

  • —— (1987) The genesis of refractory melts in the formation of oceanic crust. Contrib Min Petrol 96: 326–342

    Google Scholar 

  • Elthon D (1983) Isomolar and isostructural pseudo-liquidus phase diagrams for oceanic basalts. Am Min 68: 506–511

    Google Scholar 

  • —— (1980) High pressure equilibria of a high-mg basalt: implications for the origin of MOR. Carnegie Institute of Washington Yearbook 79: 277–281

    Google Scholar 

  • —— —— (1984) High-pressure phase equilibria of a high-magnesia basalt and the genesis of primary oceanic basalts. Am Min 69: 1–15

    Google Scholar 

  • Falloon TJ, Green DH (1986) Glass inclusions in magnesian olivine phenocrysts from Tonga: evidence for highly refractory parental magmas in the Tongan arc. Earth Planet Sci Lett 81: 95–103

    Google Scholar 

  • ——Hatton CJ, Harris KL (1988) The anhydrous partial melting of a fertile and depleted peridotite from 2-30 kbar and application to basalt petrogenesis. J Petrol (in press)

  • ——(1987) Anhydrous partial melting of peridotite from 8 to 35 kbars and the petrogenesis of MORB. J Petrol (submitted)

  • Fisk MK (1984) Depths and temperature of mid-ocean ridge magma chambers and the composition of their source magmas. In:Gass IG, Lippard SJ, Shelton AW (eds) Ophiolites and oceanic lithosphere. Blackwell Scientific Publications, Oxford, pp 17–23

    Google Scholar 

  • Frey FA, Bryan WB, Thompson G (1974) Atlantic Ocean Floor: Geochemistry and Petrology of basalts from Legs 2 and 3 of the DSDP. J Geophys Res 79: 5507–5527

    Google Scholar 

  • —— (1985) The Ronda high temperature peridotite: Geochemistry and petrogenesis. Geochim Cosmochim Acta 49: 2469–2491

    Google Scholar 

  • —— (1973) Petrological and geochemical results for basalts from DSDP Legs 2 and 3. EOS Trans. AGU, 54: 1004–1006

    Google Scholar 

  • Fujii T, Kushiro I (1977) Melting relations and viscousity of an abyssal tholeiite. Yb Carnegie Instn Wash 76: 461–465

    Google Scholar 

  • —— (1983) Melting relations of a magnesian abyssal tholeiite and the origin of MORBs. Earth Planet Sci Lett 62: 283–295

    Google Scholar 

  • —— (1985) Compositions of liquids coexisting with spinel lherzolite at 10 kbar and the genesis of MORBs. Earth Planet Sci Lett 90: 18–28

    Google Scholar 

  • —— (1978) Melting relations and viscosity of an abyssal olivine tholeiite. In:Melson WG, Rabinowitz PD, et al. (eds) Initial reports of the deep sea drilling project, vol 45, Washington (U.S. Government Printing Office), pp 513–517

    Google Scholar 

  • Green DH (1970) The origin of basaltic and nephelinitic magmas. Trans Leicester Lit Phil Society 64: 28–54

    Google Scholar 

  • —— (1971) Composition of basaltic magmas as indicators of conditions of origin: application to oceanic volcanism. Phil Trans Roy Soc Lond 268: 707–725

    Google Scholar 

  • —— (1973) Experimental melting studies on a model upper mantle composition at high pressure under water-saturated and water-undersaturated conditions. Earth Planet Sci Lett 19: 37–53

    Google Scholar 

  • —— (1976) Experimental testing of “equilibrium” partial melting of peridotite under water-saturated, high-pressure conditions. Can Min 14: 255–268

    Google Scholar 

  • —— (1967) The genesis of basaltic magmas. Contrib Min Petrol 15: 103–190

    Google Scholar 

  • Hibberson WO, Jaques AL (1979) Petrogenesis of mid-ocean ridge basalts. In:McElhinney MW (ed) The Earth: its origin structure and evolution. Academic Press London, pp 265-299

  • Falloon TJ, Taylor WR (1987) Mantle derived magmas role of variable source peridotite and variable C-H-O fluid compositions. In:Mysen BO (ed) Magmatic processes: Physicochemical principles. The Geochemical Society Spec Publ l : 139-154

  • Grove TL, Gerlach DC, Sando TW (1982) Origin of Cale-Alkaline Series Lavas at Medicine Lake Volcano by fractionation, assimilation and mixing. Contrib Min Petrol 80: 160–182

    Google Scholar 

  • Hawkins JW, Melchior JT (1985) Petrology of Mariana trough and Lau Basin Basalts. J Geophys Res 90: 11,431–11,468

    Google Scholar 

  • Hekinian R, Moore JG, Bryan WB (1976) Volcanic rocks and processes of the mid-Atlantic ridge rift valley near 36°49′ N. Contrib Mineral Petrol 58: 83–110

    Google Scholar 

  • Jagoutz E, Palme H, Baddenhausen H, Blum K, Cendales M, Dreibus G, Spettel B, Lorenz V, Wanke H (1979) The abundance of major, minor and trace elements in the earth's mantle as derived from primitive ultramafic nodules. Proc Lunar planet Sci Conf 10th. Geochim Cosmochim Acta [Suppl] 11: 2031–2050

    Google Scholar 

  • Jaques AL, Green DH (1979) Determination of liquid compositions in high-pressure melting of peridotite. Am Min 64: 1312–1321

    Google Scholar 

  • ——, —— (1980) Anhydrous melting of peridotite at 0–15 kbar pressure and the genesis of tholeitic basalts. Contrib Min Petrol 73: 287–310

    Google Scholar 

  • Kushiro I (1973) Origin of some magmas in oceanic and circum-oceanic regions. Tectonophysics 17: 211–222

    Google Scholar 

  • —— (1975) On the nature of silicate melt and its significance in magma genesis: regularities in the shift of the liquidus boundaries involving olivine, pyroxene and silica minerals. Am J Sci 275: 411–431

    Google Scholar 

  • —— (1972) Origin of some abyssal tholeiites from the mid-Atlantic ridge. Carnegie Inst Washington Yearb 71: 403–406

    Google Scholar 

  • Langmuir CH, Bender JF, Bence AE, Hanson GN (1977) Petrogenesis of basalts from the FAMOUS area: Mid-Atlantic ridge. Earth Planet Sci Lett 36: 133–156

    Google Scholar 

  • Le Roex AP, Erlank AJ, Needham HD (1981) Geochemical and mineralogical evidence for the occurrence of at least three distinct magma types in the “FAMOUS” region. Contrib Min Petrol 77: 24–37

    Google Scholar 

  • Maaloe S, Aoki K (1977) The major element composition of the upper mantle estimated. from the composition of lherzolites. Contrib Min Petrol 63: 161–173

    Google Scholar 

  • Melson WG (1973) Basaltic glasses from the Deep Sea Drilling Project: chemical characteristics, compositions of alteration products, and fission track “ages”. EOS 54: 1011

    Google Scholar 

  • O'Hearn T (1979) Basaltic glass erupted along the mid-Atlantic ridge between 0–37°N: Relationships between composition and latitude. In: Talwani M, Hay W, Ryan WBF (eds) Deep Sea Drilling Results in the Atlantic Ocean: Ocean Crust. Am Geophys Union, Maurice Ewing ser 2: 273-284

  • —— (1976) Chemical diversity of abyssal volcanic glass erupted along Pacific, Atlantic, and Indian Ocean sea-floor spreading centers. AGU Geophys Mon 19: 351–368

    Google Scholar 

  • —— (1977) A catalog of the major element chemistry of abyssal volcanic glasses. Smithsonian Contrib Earth Sci 19: 31–60

    Google Scholar 

  • Merrill RB, Wyllie PJ (1973) Absorption of iron by platinum capsules in high pressure rock melting experiments. Am Min 58: 16–20

    Google Scholar 

  • Natland JH, Adamson AC, Laverne C, Melson WG, O'Hearn T (1984) A compositionally nearly steady-state magma chamber at the Costa Rica Rift: Evidence from basalt glass and mineral data, deep sea drilling project sites 501, 504 and 505. In:Cann JR, Langseth MG, Honnorez J, von Herzen RP, White SM et al (eds) Initial reports of the deep sea drilling project, vol 69, Washington (U.S. Government Printing Office), pp 811–858

    Google Scholar 

  • Nehru CE, Wyllie PJ (1975) Compositions of glasses from St. Pauls peridotite partially melted at 20 kbar. J Geol 83: 455–471

    Google Scholar 

  • Nickel KG, Green DH (1984) The nature of the upper-most mantle beneath Victoria, Australia as deduced from ultramafic xenoliths. In:Kornprobst J (ed) Kimberlites II. The mantle and crust-mantle relationships. Elsevier, Amsterdam, pp 161–178

    Google Scholar 

  • O'Donnell TH, Presnall DC (1980) Chemical variations of the glass and mineral phases in basalts dredged from 25°-30 °N along the mid-Atlantic ridge. Am J Sci 280: 845–868

    Google Scholar 

  • O'Hara MJ (1968) Are ocean floor basalts primary magma? Nature 220: 683–686

    Google Scholar 

  • —— (1977) Problems of iron gain and loss during experimentation on natural rocks: The experimental crystallization of five lunar basalts at low pressure. Phil Trans R Soc Lond 286: 313–330

    Google Scholar 

  • Presnall DC, Hoover JD (1984) Composition and depth of origin of primary mid-ocean ridge basalts. Contrib Min Petrol 87: 170–178

    Google Scholar 

  • ——, —— (1986) Composition and depth of origin of primary mid-ocean ridge basalts-reply to D. Elthon. Contrib Min Petrol 94: 257–261

    Google Scholar 

  • —— (1979) Generation of mid-ocean ridge tholeftes. J Petrol 20: 3–35

    Google Scholar 

  • Price RC, Kennedy AK, Riggs-Sneeringer M, Frey FA (1986) Geochemistry of basalts from the Indian Ocean triple junction: implications for the generation and evolution of Indian Ocean ridge basalts. Earth Planet Sci Lett 78: 379–396

    Google Scholar 

  • Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Min Petrol 29: 275–289

    Google Scholar 

  • Sato H (1977) Nickel content of basaltic magmas: identification of primary magmas and a measure of the degree of olivine fractionation. Lithos 10: 113–120

    Google Scholar 

  • Scarfe CM, Smith DGW, (1977) Secondary minerals in some basaltic rocks from DSDP Leg 37. Can J Earth Sci 14: 903–910

    Google Scholar 

  • Sen G (1982) Composition of basaltic liquids generated from a partially depleted lherzolite at 9 kbar pressure. Nature 299: 336–338

    Google Scholar 

  • Shibata T, Thompson G (1986) Peridotites from the mid-Atlantic ridge at 43'N and their petrogenesic relation to abyssal tholeiites. Contrib Mi Petrol 93: 144–159

    Google Scholar 

  • —— (1979) Abyssal tholeiites from the oceanographer fracture zone. I. Petrology and fractionation. Contrib Min Petrol 70: 89–102

    Google Scholar 

  • Shipboard Scientific Party (1977) Initial reports of the deep sea drilling project, vol 37, Washington (U.S. Government Printing Office), pp 15–326

    Google Scholar 

  • Sigurdsson H (1981) First-order major element variation in basalt glasses from the mid-Atlantic ridge 29°N to 73°N. J Geophys Res 86: 9483–9502

    Google Scholar 

  • Stakes DS, Shervais JW, Hopson CA (1984) The volcanic-tectonic cycle of the FAMOUS and AMAR valleys, Mid-Atlantic ridge (36°47'N): evidence from basalt glass and phenocryst compositional variations for a steady state magma chamber beneath the valley midsections, AMAR 3. J Geophys Res 89: 6995–7028

    Google Scholar 

  • Stern CR, Wyllie PJ (1975) Effect of iron absorption by noble-metal capsules on phase boundaries in rock melting experiments at 30 kbar. Am Mineral 60: 681–689

    Google Scholar 

  • Stolper E (1980) A phase diagram for mid-ocean ridge basalts: preliminary results and implications for petrogenesis. Contrib Min Petrol 74: 13–27

    Google Scholar 

  • Takahashi E (1980) Olivine/liquid nickel partitioning at high pressures: experiments with an olivine capsule. EOS 61: 397

    Google Scholar 

  • —— (1986) Melting of a dry peridotite KLB-1 up to 14 Gpa: Implications on the origin of peridotitic upper mantle. J Geophys Res 91: 9367–9382

    Google Scholar 

  • —— (1983) Melting of a dry peridotite at high pressures and basalt magma genesis. Am Min 68: 859–879

    Google Scholar 

  • Thompson RN (1987) Phase-equilibria constraints on the genesis and magmatic evolution of oceanic basalts. Earth Science Reviews 24: 161–210.

    Google Scholar 

  • Walker D, Shibata T, DeLong SE (1979) Abyssal tholeiites from the oceanographer fracture zone. 11. Phased equilibria and mixing. Contrib Min Petrol 70: 111–125

    Google Scholar 

  • Wilkinson JFG (1982) The genesis of mid-ocean ridge basalts. Earth Science Reviews 18: 1–57

    Google Scholar 

  • Yoder HS Jr, Tilley CE (1962) Origin of basalt magmas: an experimental study of natural and synthetic rock systems. J Petrol 3: 342–532

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 10 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falloon, T.J., Green, D.H. Anhydrous partial melting of MORB pyrolite and other peridotite compositions at 10 kbar: Implications for the origin of primitive MORB glasses. Mineralogy and Petrology 37, 181–219 (1987). https://doi.org/10.1007/BF01161817

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01161817

Keywords

Navigation