Skip to main content
Log in

Physicochemical parameters of the origin of hydrothermal mineral deposits: Evidence from fluid inclusions. IV. Copper and molybdenum deposits

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Physicochemical parameters of the origin of Cu and Mo deposits are reviewed based on an original database that currently includes information from more than 21000 publications on fluid and melt inclusions hosted in various minerals. The deposits are classified into three types: (i) Cu–Mo (usually porphyry), (ii) Cu (usually without Mo but often with base metals), and (iii) Mo (without Cu but often with Be and W). For these deposits, the temperature and pressure of their origin and the density, salinity, and gas composition of the fluids are discussed. The average composition of the dominant volatile components of natural fluids is reported for Cu and Mo deposits and is compared with the composition of volatiles in fluids at Au, Sn, W, Pb, and Zn deposits. Data on individual inclusions are used to evaluate the Cu and Mo concentrations in the magmatic silicate melts and mineral-forming fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Z. Adeli, I. Rasa, and A. Darvishzadeh, “Fluid inclusion study of the ore–quartz veins at Haftcheshmeh porphyry copper (Mo) deposit, Ahar–Arasbaran Magmatic Belt, NW Iran,” Ore Geol. Rev. 65, 502–511 (2015).

    Article  Google Scholar 

  • O. Asghari, A. Hezarkhani, and F. Soltani, “The comparison of alteration zones in the Sungun porphyry copper deposit, Iran (based on fluid inclusion studies),” Acta Geol. Polonica 59, 93–109 (2009).

    Google Scholar 

  • A. Audetat, T. Pettke, C. A. Heinrich, and R. J. Bodnar, “The composition of magmatic–hydrothermal fluids in barren and mineralized intrusions,” Econ. Geol. 103, 877–908 (2008).

    Article  Google Scholar 

  • A. Audetat, “Compositional evolution and formation conditions of magmas and fluids related to porphyry Mo mineralization at Climax, Colorado,” J. Petrol. 56, 1519–1546 (2015).

    Article  Google Scholar 

  • L. Bailly, L. Grancea, and K. Kouzmanov, “Infrared microthermometry and chemistry of wolframite from the Baia Sprie epithermal deposit, Romania,” Econ. Geol. 97, 415–423 (2002).

    Article  Google Scholar 

  • F. Bouzari and A. H. Clark, “Prograde evolution and geothermal affinities of a major porphyry copper deposit: the Cerro Colorado hypogene protore, I Region, Northern Chile,” Econ. Geol. 101, 95–134 (2006).

    Article  Google Scholar 

  • G. Bozkaya and D. A. Banks, “Physico-chemical controls on ore deposition in the Arapucandere Pb–Zn–Cuprecious metal deposit, Biga Peninsula, NW Turkey,” Ore Geol. Rev. 66, 65–81 (2015).

    Article  Google Scholar 

  • E. Campos, J. L. R. Touret, I. Nikogosian, and J. Delgado, “Overheated, Cu-bearing magmas in the Zaldivar porphyry-Cu deposit, Northern Chile. geodynamic consequences,” Tectonophysics 345, 229–251 (2002).

    Article  Google Scholar 

  • L. Chen, K. Z. Qin, J. X. Li, B. Xiao, G. M. Li, J. X. Zhao, and X. Fan, “Fluid inclusions and hydrogen, sulfur isotopes of Nuri Cu–W–Mo deposit in the Southern Gangdese, Tibet,” Resour. Geol. 62, 42–62 (2012).

    Article  Google Scholar 

  • G. X. Chi and C. J. Xue, “Abundance of CO2-rich fluid inclusions in a sedimentary basin-hosted Cu deposit at Jinman, Yunnan, China: implications for mineralization environment,” Mineral. Deposita 46, 365–380 (2011).

    Article  Google Scholar 

  • R. S. Darling, “Fluid inclusion and phase equilibrium studies at the Cannivan Gulch molybdenum deposit, Montana, USA: Effect of CO2 on molybdenite–powellite stability,” Geochim. Cosmochim. Acta 58, 749–760 (1994).

    Article  Google Scholar 

  • Y. Demir, I. Uysal, M. B. Sadiklar, A. Ceriani, N. Hanilci, and D. Muller, “Mineralogy, mineral chemistry, fluid inclusion, and stable isotope investigations of the Kabaduz ore veins, Ordu, NE-Turkey,” Ore Geol. Rev. 66, 82–98 (2015).

    Article  Google Scholar 

  • P. H. Frikken, D. R. Cooke, J. L. Walshe, D. Archibald, J. Skarmeta, L. Serrano, and R. Vargas, “Mineralogical and isotopic zonation in the Sur-Sur tourmaline breccia, Rio Blanco-Los Bronces Cu–Mo deposit, Chile: Implications for ore genesis,” Econ. Geol. 100, 935–961 (2005).

    Article  Google Scholar 

  • I. V. Gas’kov, V. A. Simonov, and S.V. Kovyazin, “Evolution of physicochemical parameters and geochemical characteristics of magmas during the development of ore-bearing pyrite systems of Rudny Altai and Tuva,” Russ. Geol. Geophys. 47, 1335–1347 (2006).

    Google Scholar 

  • L. Grancea, L. Bailly, J. Leroy, D. Banks, E. Marcoux, J. P. Milesi, M. Cuney, A. S. Andre, D. Istvan, and C. Fabre, “Fluid evolution in the Baia Mare epithermal gold/polymetallic district, Inner Carpathians, Romania,” Mineral. Deposita 37, 630–647 (2002).

    Article  Google Scholar 

  • T. Graupner, U. Kempe, E. Dombon, O. Patzold, O. Leeder, and E. T. C. Spooner, “Fluid regime and ore formation in the tungsten(–yttrium) deposits of Kyzyltau (Mongolian Altai): evidence for fluid variability in tungsten-tin ore systems,” Chem. Geol. 154, 21–58 (1999).

    Article  Google Scholar 

  • T. Habibi and Hezarkhani, A. “Hydrothermal evolution of Daraloo porphyry copper deposit, Iran: evidence from fluid inclusions,” Arabian J. Geosci. 6, 1945–1955 (2013).

    Article  Google Scholar 

  • A. C. Harris, V. S. Kamenetsky, N. C. White, E. van Achterbergh, and C. G. Ryan, “Melt inclusions in veins: linking magmas and porphyry Cu deposits,” Science 302 (5653), 2109–2111 (2003).

    Article  Google Scholar 

  • C. A. Heinrich, D. Gunther, A. Audetat, T. Ulrich, and R. Frischknecht, “Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions,” Geology 27, 755–758 (1999).

    Article  Google Scholar 

  • C. A. Heinrich, C. G. Ryan, T. P. Mernach, and P. J. Eadington, “Segregation of ore metals between magmatic brine and vapor: A fluid inclusion study using PIXE microanalysis,” Econ. Geol. 87, 1566–1593 (1992).

    Article  Google Scholar 

  • R. W. Henley and McNabb, A. “Magmatic vapor plumes and ground-water interaction in porphyry copper emplacement,” Econ. Geol. 73, 1–20 (1978).

    Article  Google Scholar 

  • A. Hezarkhani and A. E. Williams-Jones, “Controls of Alteration and mineralization in the Sungun porhyry copper deposit, Iran: evidence from fluid inclusions and stable isotopes,” Econ. Geol. 93, 651–670 (1998).

    Article  Google Scholar 

  • A. Hezarkhani, “Hydrothermal evolution of the Sar-Cheshmeh porhyry Cu-Mo deposit, Iran: Evidence from fluid inclusions,” J. Asian Earth Sci. 28, 409–422 (2006).

    Article  Google Scholar 

  • Z. G. Hou K. Zaw, P. Rona, Y. Q. Li, X. M. Qu, S. Song, L. G. Peng, and J. J. Huang, “Geology, fluid inclusions, and oxygen isotope geochemistry of the Baiyinchang pipe-style volcanic-hosted massive sulfide Cu deposit in Gansu province, northwestern China,” Econ. Geol. 103, 269–292 (2008).

    Article  Google Scholar 

  • Z. Q. Hou, Z. M. Yang, X. M. Qu, X. Meng, Z. Q. Li, G. Beaudoin, Z. Y. Rui, Y. F. Gao, and K. Zaw, “The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen,” Ore Geol. Rev. 36, 25–51 (2009).

    Article  Google Scholar 

  • G. F. Ivanova, G. M. Kolesov, V. S. Karpukhina, and E. V. Cherkasova, “Rare-earth elements and the genesis of ore mineralization at the Kalgutinskoe tungsten ore field, Gornyi Altai,” Geochem. Int. 44 (5), 508–515 (2006).

    Article  Google Scholar 

  • A. W. Johnson, K. L. Shelton, J. M. Gregg, I. D. Somerville, W. R. Wright, and Z. R. Nagy, “Regional studies of dolomites and their included fluids: recognizing multiple chemically distinct fluids during the complex diagenetic history of Lower Carboniferous (Mississippian) rocks of the Irish Zn–Pb ore field,” Mineral. Petrol. 96, 1–18 (2009).

    Article  Google Scholar 

  • M. Y. Kim, “Fluid inclusion studies relating to tungstentin- copper mineralization at the Ohtani mine,” Japan. J. Geosci. Osaka City Univ. 24, 109–162 (1981).

    Google Scholar 

  • L. M. Klemm, T. Pettke, C. A. Heinrich, and E. Campos, “Hydrothermal evolution of the El Teniente deposit, Chile: Porphyry Cu-Mo ore deposition from low-salinity magmatic fluids,” Econ. Geol. 102, 1021–1045 (2007).

    Article  Google Scholar 

  • P. Kodera, J. Lexa, A. H. Rankin, and A. E. Fallik, “Epithermal gold veins in a caldera setting: Banska Hodrusa, Slovakia,” Mineral. Deposita 39, 921–943 (2005).

    Article  Google Scholar 

  • V. A. Kovalenker, G. D. Kiseleva, T. L. Krylova, and O. V. Andreeva, “Mineralogy and ore formation conditions of the Bugdaya Au-bearing W–Mo porphyry deposit, Eastern Transbaikal region, Russia,” Geol Ore Deposits 53, 93–125 (2011).

    Article  Google Scholar 

  • R. Kreulen and R. D. Schuiling, “N2–CH4–CO2 fluids during formation of the Dome de l’Agout, France,” Geochim. Cosmochim. Acta 46, 193–203 (1982).

    Article  Google Scholar 

  • J. Lai and G. Chi, “CO2-rich fluid inclusions with chalcopyrite daughter mineral from the Fenghuangshan Cu‒Fe–Au deposit, China: implications for metal transport in vapor,” Mineral. Deposita 42, 293–299 (2007).

    Article  Google Scholar 

  • E. M. Laz’ko, Yu. V. Lyakhov, and A. V. Piznyur, Physicochemical Parameters of Postmagmatic Ore-Forming Processes: Evidence from Inclusions in Minerals (Nedra, Moscow, 1981) [in Russian].

    Google Scholar 

  • N. Li, Y. J. Chen, T. Ulrich, and Y. Lai, “Fluid inclusion study of the Wunugetu Cu–Mo deposit, Inner Mongolia, China,” Mineral. Deposita 47, 467–482 (2012).

    Article  Google Scholar 

  • N. Li, T. Ulrich, Y. J. Chen, T. B. Thomsen, V. Pease, and F. Pirajno, “Fluid evolution of the Yuchiling porphyry Mo deposit, East Qinling, China,” Ore Geol. Rev. 48, 442–459 (2012).

    Article  Google Scholar 

  • J. Liu, G. Wu, Y. Li, M. T. Zhu, and W. Zhong, “Re–Os sulfide (chalcopyrite, pyrite and molybdenite) systematics and fluid inclusion study of the Duobaoshan porphyry Cu (Mo) deposit, Heilongjiang Province, China,” J. Asian Earth Sci. 49, 300–312 (2012).

    Article  Google Scholar 

  • J. Liu, J. W. Mao, G. Wu, F. Wang, D. F. Luo, Y. Q. Hu, and T. G. Li, “Fluid inclusions and H–O–S–Pb isotope systematics of the Chalukou giant porphyry Mo deposit, Heilongjiang Province, China,” Ore Geol. Rev. 59, 83–96 (2014).

    Article  Google Scholar 

  • V. Luders, R. L. Romer, H. A. Gilg, R. J. Bodnar, T. Pettke, and D. Misantoni, “A geochemical study of the Sweet Home Mine, Colorado Mineral Belt, USA: hydrothermal fluid evolution above a hypothesized granite cupola,” Mineral. Deposita 44, 415–434 (2009).

    Article  Google Scholar 

  • G. J. Masterman, D. R. Cooke, R. F. Berry, J. L. Walshe, A. W. Lee, and A. H. Clark, “Fluid chemistry, structural setting, and emplacement history of the Rosario Cu–Mo porphyry and Cu–Ag–Au epithermal veins, Collahuasi district, Northern Chile,” Econ. Geol. 100, 835–862 (2005).

    Article  Google Scholar 

  • V. Melfos, M. Vavelidis, G. Christofides, and E. Seidel, “Origin and evolution of the Tertiary Maronia porphyry copper-molybdenum deposit, Thrace, Greece,” Mineral. Deposita 37, 648–668 (2002).

    Article  Google Scholar 

  • T. P. Mernagh and A. S. Wygralak, “A fluid inclusion study of uranium and copper mienral systems in the Murphy inlier (Northern Australia),” Russ. Geol. Geophys. 52, 1421–1435 (2011).

    Article  Google Scholar 

  • O. F. Mironova, “Volatile components of natural fluids: evidence from inclusions in minerals: methods and results,” Geochem. Int. 48 (1), 83–90 (2010).

    Article  Google Scholar 

  • F. Molnar, D. H. Watkinson, and P. C. Jones, “Multiple hydrothermal processes in footwall units of the North Range, Sudbury igneous complex, Canada, and implications for the genesis of vein-type Cu–Ni–PGE deposits,” Econ. Geol. 96, 1645–1670 (2001).

    Article  Google Scholar 

  • A. Moura, “Fluids from the Neves Corvo massive sulphide ores, Iberian Pyrite Belt, Portugal,” Chem. Geol. 223, 153–169 (2005).

    Article  Google Scholar 

  • A. Moura, “Metallogenesis at the Neves Corvo VHMS deposit (Portugal): A contribution from the study of fluid inclusions,” Ore Geol. Rev. 34, 354–368 (2008).

    Article  Google Scholar 

  • R. Mustard, T. Ulrich, V. Kamenetsky, and T. Mernagh, “Gold and metal enrichment in natural granitic melts during fractional crystallization,” Geology 34, 85–88 (2006).

    Article  Google Scholar 

  • V. B. Naumov and A. L. Sokolov, “Genetic relations between granites and tin veins of the Industrial’noe deposit: evidence from mineral inclusion data,” Geol. Rudn. Mestorozhd., No. 4, 74–80 (1981).

    Google Scholar 

  • V. B. Naumov and G. F. Ivanova, “Geochemical criteria for genetic relation of rare-metal mineralization with felsic magmatism,” Geokhimiya, No. 6, 791–804 (1984).

    Google Scholar 

  • V. B. Naumov and V. S. Kamenetsky, “Silicate and salt melts in the genesis of the Industrial’noe tin deposit: evidence from inclusions in minerals,” Geochem. Int. 44 (12), 1181–1190 (2006).

    Article  Google Scholar 

  • V. B. Naumov and V. I. Kovalenko, “Water concentration and pressure in felsic magmas: evidence from fluid inclusions,” Dokl. Akad. Nauk SSSR 261 (6), 1417–1420 (1981).

    Google Scholar 

  • V. B. Naumov, G. V. Nesterenko, I. Lazert, and L. Chaves, “PT conditions of formation of some copper deposits in Chile,” Geokhimiya, No. 8, 1163–1169 (1973).

    Google Scholar 

  • V. B. Naumov, V. I. Kovalenko, V. A. Dorofeeva, A. V. Girnis, and V. V. Yarmolyuk, “Average compositions of igneous melts from main geodynamic settings according to the investigation of melt inclusions in minerals and quenched glasses of rocks,” Geochem. Int. 48 (12), 1185–1207 (2010).

    Article  Google Scholar 

  • V. B. Naumov, V. A. Dorofeeva, and O. F. Mironova, “Principal physicochemical parameters of natural mineral- forming fluids,” Geochem. Int. 47 (8), 777–802 (2009).

    Article  Google Scholar 

  • V. B. Naumov, V. A. Dorofeev, and O. F. Mironova, Physicochemical parameters of the formation of hydrothermal deposits: a fluid inclusion study. I. Tin and tungsten deposits,” Geochem. Int. 49 (10), 1002–1022 (2011).

    Article  Google Scholar 

  • V. B. Naumov, V. A. Dorofeeva, and O. F. Mironova, “Physicochemical formation parameters of hydrothermal mineral deposits: evidence from fluid inclusions. II. Gold, silver, lead, and zinc deposits,” Geochem. Int. 52 (6), 433–455 (2014).

    Article  Google Scholar 

  • V. B. Naumov, V. A. Dorofeeva, and O. F. Mironova, “Physicochemical parameters of formation of hydrothermal deposits: evidence from fluid inclusions. III. Uranium deposits,” Geochem. Int. 53 (2), 113–132 (2015).

    Article  Google Scholar 

  • V. B. Naumov, V. A. Dorofeeva, O. F. Mironova, and V. Yu. Prokof’ev, “Sources of high-pressure fluids involved in the formation of hydrothermal deposits,” Geochem. Int. 53 (7), 590–606 (2015).

    Article  Google Scholar 

  • D. I. Norman and F. J. Sawkins, “The Tribag breccia pipes: Precambrian Cu–Mo deposits, Batchawana Bay, Ontario,” Econ. Geol. 80, 1593–1621 (1985).

    Article  Google Scholar 

  • H. J. Peng, C. Q. Zhang, J. W. Mao, M. Santosh, Y. M. Zhou, and L. Hou, “Garnets in porphyry–skarn systems: a LA-ICP-MS, fluid inclusion, and stable isotope study of garnets from the Hongniu-Hongshan copper deposit, Zhongdian area, NW Yunnan Province, China,” J. Asian Earth Sci. 103, 229–251 (2015).

    Article  Google Scholar 

  • F. Pirajno, T. P. Mernagh, D. Huston, R. A. Creaser, and R. Seltmann, “The Mesoproterozoic Abra polymetallic sedimentary rock-hosted mineral deposit, Edmund Basin, Western Australia,” Ore Geol. Rev. 76, 442–462 (2016).

    Article  Google Scholar 

  • P. A. Polito, T. K. Kyser, P. N. Southgate, and M. J. Jackson, “Sandstone diagenesis in the Mount Isa basin: An isotopic and fluid inclusion perspective in relationship to district-wide Zn, Pb, and Cu mineralization,” Econ. Geol. 101, 1159–1188 (2006).

    Article  Google Scholar 

  • V. Yu. Prokof’ev, F. G. Reif, Yu. M. Ishkov, and V. A. Kovalenker, Metal potential of the ore-forming fluids of the Banska–Stiavnica gold–silver–base metal deposit, Central Slovakia,” Dokl. Ross. Akad. Nauk 324 (2), 425–429 (1992).

    Google Scholar 

  • L. E. Ramirez, M. A. Parada, C. Palacios, and J. Wittenbrink, “Magmatic evolution of the Mantos Blancos copper deposit, Coastal Range of northern Chile: insight from Sr-Nd isotope, geochemical data and silicate melt inclusions,” Resource Geol. 58, 124–142 (2008).

    Article  Google Scholar 

  • R. O. Rye and F. J. Sawkins, “Fluid inclusion and stable isotope studies on the Casapalca Ag–Pb–Zn–Cu deposit, Central Andes, Peru,” Econ. Geol. 69, 181–205 (1974).

    Article  Google Scholar 

  • M. Sadequi, M. Bouabdellah, A. Boushaba, E. Marcoux, and A. Cheilletz, “Mineralogy, fluid inclusion, and oxygen isotope constraints on the genesis of the Lalla Zahra W–(Cu) deposit, Alouana district, northeastern Morocco,” Arabian J. Geosci. 6, 3067–3085 (2013).

    Article  Google Scholar 

  • I. M. Samson and A. E. Williams-Jones, “C–O–H–N–salt fluids associated with metamorphism, McGerrigle Mountains, Quebec: A Raman spectroscopic study,” Geol. Assoc. Canada 15, A116 (1990).

    Google Scholar 

  • F. J. Sawkins, “Fluid inclusion studies of the Messina copper deposits, Transvaal, South Africa,” Econ. Geol. 72, 619–631 (1977).

    Article  Google Scholar 

  • C. Schindler, S. G. Hagemann, D. Banks, T. Mernagh, and A. C. Harris, “Magmatic hydrothermal fluids at the sedimentary rock-hosted, intrusion-related Telfer gold–copper deposit, Paterson orogen, Western Australia: Pressure-temperature-composition constraints on the ore-forming fluids,” Econ. Geol. 111, (2016).

    Google Scholar 

  • A. M. Shafaroudi and M. H. Karimpour, “Mineralogic, fluid inclusion, and sulfur isotope evidence for the genesis of Sechangi lead–zinc (–copper) deposit, Eastern Iran,” J. African Earth Sci. 107, 1–14 (2015).

    Article  Google Scholar 

  • A. M. Shafaroudi, M. H. Karimpour, and C. R. Stern, “The Khopik porphyry copper prospect, Lut Block, Eastern Iran: Geology, alteration and mineralization, fluid inclusion, and oxygen isotope studies,” Ore Geol. Rev. 65, 522–544 (2015).

    Article  Google Scholar 

  • K. L. Shelton, “Composition and origin of ore-forming fluids in a carbonate-hosted porphyry copper and skarn deposit: a fluid inclusion and stable isotope study of Mines Gaspe, Quebec,” Econ. Geol. 78, 387–421 (1983).

    Article  Google Scholar 

  • K. L. Shelton, C. S. So, D. M. Rye, and M.-E. Park, “Geologic, sulfur isotope, and fluid inclusion studies of the Sannae W–Mo mine, Republic of Korea: comparison of sulfur isotope systematics in Korean W deposits.,” Econ. Geol. 81, 430–446 (1986).

    Article  Google Scholar 

  • R. L. Sherlock, T. Roth, E. T. C. Spooner, and C. J. Bray, “Origin of the Eskay Creek precious metal-rich volcanogenic massive sulfide deposit: fluid inclusion and stable isotope evidence,” Econ. Geol. 94, 803–824 (1999).

    Article  Google Scholar 

  • V. A. Simonov, I. V. Gaskov, and S. V. Kovyazin, “Physicochemical parameters from melt inclusions for the formation of the massive sulfide deposits in the Altai-Sayan region, Central Asia,” Austral. J. Earth Sci. 57, 737–754 (2010).

    Article  Google Scholar 

  • C. S. So, K. L. Shelton, D. E. Seidemann, and B. J. Skinner, “The Dae Hwa tungsten–molybdenum mine, Republic of Korea: a geochemical study,” Econ. Geol. 78, 920–930 (1983).

    Article  Google Scholar 

  • C. S. So, S. J. Chi, K. I. Shelton, and B. J. Skinner, “Copper-bearing hydrothermal vein deposits in the Gyeongsang basin, Republic of Korea,” Econ. Geol. 85, 43–56 (1985).

    Article  Google Scholar 

  • E. Stefanova, T. Driesner, Z. Zajacz, C. A. Heinrich, P. Petrov, and Z. Vasilev, “Melt and fluid inclusions in hydrothermal veins: The magmatic to hydrothermal evolution of the Elatsite porphyry Cu–Au deposit, Bulgaria,” Econ. Geol. 109, 1359–1381 (2014).

    Article  Google Scholar 

  • W. Sun, V. C. Bennett, S. M. Eggins, R. J. Arculus, and M. R. Perfit, “Rhenium systematics in submarine MORB and back-arc basin glasses: laser ablation ICP-MS results,” Chem. Geol. 196, 259–281 (2003).

    Article  Google Scholar 

  • T. Ulrich, D. Gunther, and C. Heinrich, “The evolution of porphyry Cu–Au deposit, based on LA-ICP-MS analysis of fluid inclusions: Bajo de la Alumbrera, Argentina,” Econ. Geol. 96, 1743–1724 (2001).

    Article  Google Scholar 

  • I. F. Walder, D. I. Norman, and T. V. Segalstad, “Fluid inclusion gas analysis of hydrothermal vein molybdenum deposits associated with the Drammen granite in the Permian Oslo rift, Norway,” J. Geochem. Explor. 42, 195–203 (1991).

    Article  Google Scholar 

  • J. F. Walsh, S. E. Kesler, D. Duff, and P. L. Cloke, “Fluid inclusion geochemistry of high-grade, vein-hosted gold ore at the Pamour mine, Porcupine camp, Ontario,” Econ. Geol. 83, 1347–1367 (1988).

    Article  Google Scholar 

  • S. W. Wang, T. F. Zhou, F. Yuan, Y. Fan, N. C. White, and F. J. Lin, “Geological and geochemical studies of the Shujiadian porphyry Cu deposit, Anhui Province, Eastern China: Implications for ore genesis,” J. Asian Earth Sci. 103, 252–275 (2015).

    Article  Google Scholar 

  • Y. Wang, M. Sasaki, M. Sasada, and Ch.-H. Chen, “Fluid inclusion studies of the Chinkuashih high-sulfidation gold-copper deposits in Taiwan,” Chem. Geol. 154, 155–167 (1999).

    Article  Google Scholar 

  • J. D. Webster and W. A. Duffield, “Extreme halogen abundances in tin-rich magma of the Taylor Creek rhyolite, New Mexico,” Econ. Geol. 89, 840–850 (1994).

    Article  Google Scholar 

  • A. E. Williams-Jones and C. A. Heinrich, “Vapor transport of metals and the formation of magnetic-hydrothermal ore deposits,” Econ. Geol. 100, 1287–1312 (2005).

    Article  Google Scholar 

  • G. Wu, Y. Chen, Z. Li, J. Liu, X. S. Yang, and C. Qiao, “Geochronology and fluid inclusion study of the Yinjiagou porphyry-skarn Mo-Cu-pyrite deposit in the East Qinling orogenic belt, China,” J. Asian Earth Sci. 79, 585–607 (2014).

    Article  Google Scholar 

  • B. Xiao, K. Z. Qin, G. M. Li, J. X. Li, D. X. Xia, L. Chen, and J. X. Zhao, “Highly oxidized magma and fluid evolution of Miocene Qulong giant porphyry Cu–Mo deposit, Southern Tibet, China,” Resource Geol. 62, 4–18 (2012).

    Article  Google Scholar 

  • J. Xu, Y. Y. Zheng, X. Sun, and Y. H. Shen, “Alteration and mineralization at the Zhibula Cu skarn deposit, Gangdese belt, Tibet,” Ore Geol. Rev. 75, 304–326 (2016).

    Article  Google Scholar 

  • L. Q. Yang, J. Deng, R. P. Guo, L. N. Guo, Z. L. Wang, B. H. Chen, and X. D. Wang, “Word-class Xincheng gold deposit: An example from the giant Jiaodong gold province,” Geosci. Frontiers 7, 419–430 (2016).

    Article  Google Scholar 

  • Z. Zajacz and W. Halter, “LA-ICPMS analyses of silicate melt inclusions in co-precipitated minerals: quantification, data analysis and mineral/melt partitioning,” Geochim. Cosmochim. Acta 71, 1021–1040 (2007).

    Article  Google Scholar 

  • K. Zaw, D. L. Huston, R. R. Large, and C. F. Hoffmann, “Microthermometry and geochemistry of fluid inclusions from the Tennant Creek gold-copper deposits: implications for ore deposition and exploration,” Mineral. Deposita 29, 288–300 (1994).

    Article  Google Scholar 

  • K. Zaw, S. R. Hunns, R. R. Large, J. B. Gemmell, C. G. Ryan, and T. P. Mernagh, “Microthermometry and chemical composition of fluid inclusions from the Mt Chalmers volcanic-hosted massive sulfide deposits, central Queensland, Australia: implications for ore genesis,” Chem. Geol. 194, 225–244 (2003).

    Article  Google Scholar 

  • Q. D. Zeng, J. M. Liu, Z. L. Zhang, W. Q. Zhang, S. X. Chu, S. Zhang, Z. C. Wang, and X. X. Duan, “Geology, fluid inclusion, and sulfur isotope studies of the Chehugou porphyry molybdenum-copper deposit, Xilamulun metallogenic belt, NE China,” Resource Geol. 61, 241–258 (2011).

    Article  Google Scholar 

  • X. Y. Zhao, Z. S. Yang, Y. C. Zheng, Y. C. Liu, S. H. Tian, and Q. Fu, “Geology and genesis of the post-collisional porphyry-skarn deposit at Bangpu, Tibet,” Ore Geol. Rev. 70, 486–500 (2015).

    Article  Google Scholar 

  • J. Zhong, Y. J. Chen, F. Pirajno, J. Chen, J. Li, J. P. Qi, and N. Li, “Geology, geochronology, fluid inclusion and H–O isotope geochemistry of the Luoboling porphyry Cu–Mo deposit, Zijinshan Orefield, Fujian province, China,” Ore Geol. Rev. 57, 61–77 (2014).

    Article  Google Scholar 

  • M. T. Zhu, G. Wu, H. G. Xie, J. Liu, and M. Mei, “Geochronology and fluid inclusion studies of the Lailisigaoer and Lamasu porphyry–skarn Cu–Mo deposits in Northwestern Tianshan, China,” J. Asian Earth Sci. 49, 116–130 (2012).

    Article  Google Scholar 

  • J.-L. Zimmermann, “Les fluides dans les quartz des gisements stanno-cupriferes de Lanmeur-Kerprigent (Finistere),” Sciences de la Terre 19, 67–79 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Naumov.

Additional information

Original Russian Text © V.B. Naumov, V.A. Dorofeeva, O.F. Mironova, 2017, published in Geokhimiya, 2017, No. 8, pp. 715–729.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naumov, V.B., Dorofeeva, V.A. & Mironova, O.F. Physicochemical parameters of the origin of hydrothermal mineral deposits: Evidence from fluid inclusions. IV. Copper and molybdenum deposits. Geochem. Int. 55, 711–725 (2017). https://doi.org/10.1134/S0016702917080055

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702917080055

Keywords

Navigation