Skip to main content
Log in

Physicochemical Parameters of the Origin of Hydrothermal Mineral Deposits: Evidence from Fluid Inclusions. V. Antimony, Arsenic, and Mercury Deposits

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Physicochemical parameters under which hydrothermal Sb, As, and Hg deposits are formed are estimated using data from a database (which was compiled and continuously updated by the authors and includes data from more than 21 500 publications on mineral-hosted fluid and melt inclusions). The discussed parameters of the fluids are their temperature, pressure, density, salinity, and gas composition. The paper reports data on the temperature, pressure, and salinity of fluid inclusions in ore minerals (antimonite, orpiment, realgar, and cinnabar) and the calculated average composition of the dominant fluid components of natural fluids (CO2, CH4, N2, and H2S) at Sb, As, and Hg and, for comparison, at Au, Sn, W, Cu, Pb, and Zn deposits. The compositions of individual inclusions in minerals and chill glasses of rocks are utilized to calculate mean As and Sb concentrations in magmatic silicate melts of mafic, intermediate, and acid composition. Data are reported on the calculated Sb, As, and Hg concentrations in natural mineral-forming fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Akcay, H. M. Ozkan, B. Spiro, R. Wilson, and P. W. O. Hoskin, “Geochemistry of a high-T hydrothermal dolostone from the Emirli (Odemis, western Turkey) Sb–Au deposit,” Mineral. Mag. 67, 671–688 (2003).

    Article  Google Scholar 

  2. A. J. Anderson and T. McCarron, “Three-dimensional textural and chemical characterization of polyphase inclusions in spodumene using a dual focused ion beam-scanning electron microscope (FIB-SEM),” Can. Mineral. 49, 541–553 (2011).

    Article  Google Scholar 

  3. H. Aral, “Antimony mineralization in the northern Murat Dagi (western Turkey),” Econ. Geol. 84, 780–787 (1989).

    Article  Google Scholar 

  4. V. V. Aristov, V. Yu. Prokofiev, B. N. Imamendinov, S. G. Kryazhev, V. Yu. Alekseev, and A. A. Sidorov, “Ore-forming processes in the Drazhnoe gold–quartz deposit (eastern Yakutia, Russia),” Dokl. Earth Sci. 464 (1), 879–884 (2015).

    Article  Google Scholar 

  5. A. Audetat, D. Gunther, and C. A. Heinrich, “Magmatic–hydrothermal evolution in a fractionating granite: a microchemical study of the Sn–W–F mineralized Mole Granite (Australia),” Geochim. Cosmochim. Acta 64 (19), 3373–3393 (2000).

    Article  Google Scholar 

  6. B. Baatartsogt, G. Schwinn, T. Wagner, H. Taubald, T. Beitter, and G. Markl, “Contrasting paleofluid systems in the continental basement: a fluid inclusion and stable isotope study of hydrothermal vein mineralization, Schwarzwald district, Germany,” Geofluids 7, 123–147 (2007).

    Article  Google Scholar 

  7. V. A. Baskina, V. Yu. Prokof’ev, V. A. Lebedev, S. E. Borisovsky, M. G. Dobrovol’skaya, A. I. Yakushev, and S. A. Gorbacheva, “The Dal’negorsk borosilicate skarn deposit, Primorye, Russia: composition of ore-bearing solutions and boron sources,” Geol. Ore Deposits 51 (3), 179–196 (2009).

    Article  Google Scholar 

  8. S. Beuchat, R. Moritz, and T. Pettke, “Fluid evolution in the W–Cu–Zn–Pb San Cristobal vein, Peru: fluid inclusion and stable isotope evidence,” Chem. Geol. 210, 201–224 (2004).

    Article  Google Scholar 

  9. A. S. Borisenko, A. A. Borovikov, L.M. Zhitova, and G. G. Pavlova, “Composition of magmatogene fluids and factors of their geochemical specialization and metal-bearing capacity,” Russ. Geol. Geophys. 47 (12), 1282–1300 (2006).

    Google Scholar 

  10. A. Y. Borisova, R. Thomas, S. Salvi, F. Candaudap, A. Lanzanova, and J. Chmeleff, “Tin and associated metal and metalloid geochemistry by femtosecond LA-ICP-QMS microanalysis of pegmatite-leucogranite melt and fluid inclusions: new evidence for melt-melt-fluid immiscibility,” Mineral. Mag. 76 (1), 91–113 (2012).

    Article  Google Scholar 

  11. N. S. Bortnikov, G. N. Gamynin, O. V. Vikent’eva, V. Yu. Prokof’ev, and A. V. Prokop’ev, “The Sarylakh and Sentachan gold–antimony deposits, Sakha–Yakutia: a case of combined mesothermal gold–quartz and epithermal stibnite ores,” Geol. Ore Deposits 52 (5), 339–372 (2010).

    Article  Google Scholar 

  12. P. Buchholz, T. Oberthur, V. Luders, and J. Wilkinson, “Multistage Au-As-Sb mineralization and crustal-scale fluid evolution in the Kwekwe district, Midlands greenstone belt, Zimbabwe: a combined geochemical, mineralogical, stable isotope, and fluid inclusion study,” Econ. Geol. 102, 347–378 (2007).

    Article  Google Scholar 

  13. M. Burisch, A. Gerdes, B. F. Walter, U. Neumann, M. Fettel, G. Markl, “Methane and the origin of five-element veins: mineralogy, age, fluid inclusion chemistry and ore forming processes in the Odenwald, SW Germany,” Ore Geol. Rev. 81, 42–61 (2017).

    Article  Google Scholar 

  14. A. G. Bushmakin and G. A. Ishan-sho, “On temperature conditions of the Kopetdag mercury deposits,” Izv. Akad. Nauk Turkmen. SSR, Ser. Fiz.-Tekhn., Khim. Geol. Nauk, No. 5, 121–122 (1977).

    Google Scholar 

  15. M. Chovan, V. Huray, H. K. Sachan, and J. Kantor, “Origin of the fluids associated with granodiorite-hosted, Sb–As–Au–W mineralisation at Dubrava (Nizke Tatry Mts, Western Carpathians),” Mineral. Deposita 30, 48–54 (1995).

    Article  Google Scholar 

  16. R. E. Clayton and B. Spiro, “Sulphur, carbon and oxygen isotope studies of early Variscan mineralisation and Pb–Sb vein deposits in the Cornubian orefield: implications for the scale of fluid movements during Variscan deformation,” Mineral. Deposita 35, 315–331 (2000).

    Article  Google Scholar 

  17. P. Dhamelincourt, J.-M. Beny, J. Dubessy, and B. Poty, “Analyse d’inclusions fluides a la microsonde MOLE a effet Raman,” Bull. Mineral. 102, 600–610(1979).

    Google Scholar 

  18. H. G. Dill, Z. Pertold, and R. C. Kilibarda, “Sediment-hosted and volcanic-hosted Sb vein mineralization in the Potosi region, Central Bolivia,” Geology 92, 623–632 (1997).

    Google Scholar 

  19. A. Dini, M. Benvenuti, P. Costagliola, and P. Lattanzi, “Mercury deposits in metamorphic settings: the example of Levigliani and Ripa mines, Apuane Alps (Tuscany, Italy),” Ore Geol. Rev. 18, 149–167 (2001).

    Article  Google Scholar 

  20. Z. Dolnicek, B. Fojt, W. Prochaska, J. Kucera, and P. Sulovsky, “Origin of the Zalesi U–Ni–Co–As–Ag/Bi deposit, Bohemian Massif, Czech Republic: fluid inclusion and stable isotope constraints,” Mineral. Deposita 44, 81–97 (2009).

    Article  Google Scholar 

  21. N. P. Ermakova, Study of Mineral–Forming Solutions (Khar’kovsk. Univ., Khar’kov, 195) [in Russian].

  22. K. Faure and R. L. Brathwaite, “Mineralogical and stable isotope studies of gold-arsenic mineralisation in the Sams Creek peralkaline porphyritic granite, South Island, New Zealand,” Mineral. Deposita 40, 802–827 (2006).

    Article  Google Scholar 

  23. T. Fusswinkel, T. Wagner, and G. Sakellaris, “Fluid evolution of Neoarchean Pampalo orogenic gold deposit (E Finland): Constraints from LA-ICPMS fluid inclusion microanalysis,” Chem. Geol. 450, 96–121 (2017).

    Article  Google Scholar 

  24. G. N. Gamyanin, O. V. Vikent’eva, V. Yu. Prokof’ev, and N. S. Bortnikov, “Arkachan: a new gold–bismuth–siderite–sulfide type of deposits in the West Verkhoyansky tin district, Yakutia,” Geol. Ore Deposits 57 (6), 465–495 (2015).

    Article  Google Scholar 

  25. N. G. Golovchenko, “On temperatures of cinnanabr formation on the Nikotovsky and Zakarpatskii mercury deposits,” Vestn. L’vovsk. Univ., Ser. Geol. No. 4, 54–57 (1966).

    Google Scholar 

  26. N. A. Goryachev, G. N. Gamyanin, V. Yu. Prokof’ev, N. E. Savva, T. A. Velivetskaya, and A. V. Ignat’ev, “Silver–cobalt mineralization in the Upper Seymchan ore cluster, Northeastern Russia,” Geol. Ore Deposits 56 (5), 322–345 (2014).

    Article  Google Scholar 

  27. N. A. Goryachev, G. N. Gamyanin, V. Yu. Prokof’ev, T. A. Velivetskaya, A. V. Ignat’ev, and N. V. Leskova, Ag–Sb Mineralization of the Yana–Kolyma Belt, Northeast Russia, Russ. J. Pac. Geol. 30 (2), 97–110 (2011).

    Article  Google Scholar 

  28. T. R. Gray, J. J. Hanley, J. Dostal, and M. Guillong, “Magmatic enrichment of uranium, Thorium, and rare earth elements in Late Paleozoic rhyolites of southern New Brunswick, Canada: evidence from silicate melt inclusions,” Econ. Geol. 106, 127–143 (2011).

    Article  Google Scholar 

  29. J. A. Groff, A. R. Campbell, and D. I. Norman, “An evaluation of fluid inclusion microthermometric data for orpiment–realgar–calcite–barite–gold mineralization at the Betze and Carlin mines, Nevada,” Econ. Geol. 97, 1341–1346 (2002).

    Article  Google Scholar 

  30. A. H. Hofstra, E. E. Marsh, T. I. Todorov, and P. Emsbo, “Fluid inclusion evidence for a genetic link between simple antimony veins and giant silver veins in the Coeur d’Alene mining district, ID and MT, USA,” Geofluids 13, 475–493 (2013).

    Article  Google Scholar 

  31. E. Jonsson and Broman, C. “Fluid inclusions in late-stage Pb–Mn–As–Sb mineral assemblages in the Langban deposit, Bergslagen, Sweden,” Can. Mineral. 40, 47–65 (2002).

  32. A. Kay and D. F. Strong, “Geologic and fluid controls on As–Sb–Au mineralization in the Moretons Harbour area, Newfoundland,” Econ. Geol. 78, 1590–1604 (1983).

    Article  Google Scholar 

  33. L. I. Koltun and N. G. Golovchenko, “Temperatures of mineral formation at the Nikitovskoe mercury deposit determined from inclusions in minerals,” Mineral Sb. L’vovsk. Geol. O-va, No. 16, 407–410 (1962).

    Google Scholar 

  34. V. A. Kovalenker, K. A. Levin, and V. B. Naumov, A. N. Salazkin, and A. E. Kabo, “Conditions of formation of high-grade silver–arsenide ores of the Aktepe deposit (Middle Tien Shan), Geokhimiya, No. 5, 718–731 (1994).

    Google Scholar 

  35. K. R. Kovalev, Yu. A. Kalinin, E. A. Naumov, and M. K. Myagkaya, “Relationship of antimony with gold mineralization in the ore districts of Eastern Kazakhstan,” Rus. Geol. Geophys. 55, 1170–1182 (2014).

    Article  Google Scholar 

  36. S. V. Kuznetsova and O. M. Ivantishina, “Temperature conditions of formation of mercurt occurrences of Gorny Crimea,” Dokl. Akad. Nauk USSR, Ser. B., No. 7, 592–595 (1976).

    Google Scholar 

  37. V. F. Lesnyak, “Conditions of formation of antimony deposit on North Caucasus and its relation with skarn-ore complex,” Vestn. L’vovsk. Univ., Ser. Geol., No. 1, 115–118 (1962).

  38. J. Loredo, C. Luque, and J. Garcia-Iglesias, “Conditions of formation of mercury deposits from the Cantabrian Zone (Spain),” Bull. Mineral. 111, 393–400 (1988).

    Google Scholar 

  39. B. E. Madu, B. E. Nesbitt, and K. Muehlenbachs, “A mesothermal gold-stibnite-quartz vein occurrence in the Canadian Cordillera,” Econ. Geol. 85, 1260–1268 (1990).

    Article  Google Scholar 

  40. A. A. Magribi, B. O. Manucharyants, and I. S. Gavrilyuk, “Temperature conditions of mineral formation of mercury deposits of the Sevan–Karabakh zone of the central Lesser Caucasus,” Izv. Akad. Nauk SSSR, Ser. Nauk Zemle, No. 2, 99–106 (1978).

    Google Scholar 

  41. B. O. Manucharyants, V. B. Naumov, and I. L. Khodakovsky, “Physicochemical conditions of formation of hydrothermal antimony and mercury deposits,” Geokhimiya, no. 11, 1291–1301 (1970).

  42. T. Martin-Crespo, E. Vindel, J. A. Lopez-Garcia, and E. Cardellach, “As–(Ag) sulphide veins in the Spanish Central System: further evidence for a hydrothermal event of Permian age,” Ore Geol. Rev. 25, 199–219 (2004).

    Article  Google Scholar 

  43. A. Martin-Izard, P. Gumiel, M. Arias, A. Cepedal, M. Fuertes-Fuente, and R. Reguilon, “Genesis and evolution of the structurally controlled vein mineralization (Sb–Hg) in the Escarlati deposit (Leon, Spain): evidence from fault population analysis methods, fluid-inclusion research and stable isotope data,” J. Geochem. Explor. 100, 51–66 (2009).

    Article  Google Scholar 

  44. V. V. Maslennikov and B. O. Manucharyants, “Some features of the formation of antimony–mercury ores of the North Verkhoyansk region,” Sovetskaya Geol., No. 11, 143–146 (1975).

  45. B. V. Merlich, “Tendencies in the formation of mercury mineralization in Transcarpathia,” Sov. Geologiya, no. 2, 73–89 (1958).

  46. O. F. Mironova, “Volatile components of natural fluids: evidence from inclusions in minerals: methods and results,” Geochem. Int. 48 (1) 83–90 (2010).

    Article  Google Scholar 

  47. O. F. Mironova, A. N. Salazkin, and V. B. Naumov, “Bulk and spot methods in analyzing volatiles of fluid components,” Geokhimiya, No. 7, 974–984 (1995).

    Google Scholar 

  48. M. J. Morales, R. C. Figueiredo e Silva, L. M. Lobato, S. D. Gomes, C.C.C.O. Gomes, and D. A. Banks, “Metal source and fluid-rock interaction in the Archean BIF-hosted Lamego gold mineralization: Microthermometric and LA-ICP-MS analyses of fluid inclusions in quartz veins, Rio das Velhas greenstone belt, Brazil,” Ore Geol. Rev. 72, 510–531 (2016).

    Article  Google Scholar 

  49. R. Mustard, T. Ulrich, V. Kamenetsky, and T. Mernagh, “Gold and metal enrichment in natural granitic melts during fractional crystallization,” Geology 34 (2), 85–88 (2006).

    Article  Google Scholar 

  50. V. B. Naumov and G. F. Ivanova, Geochemical criteria for genetic relationship between rare-metal mineralization and felsic magmatism,” Geokhimiya, No. 6, 791–804 (1984).

    Google Scholar 

  51. V. B. Naumov and G. B. Naumov, “Mineral-forming fluids and physicochemical tendensices of their evolution,” Geokhimiya, No.10, 1450–1460 (1980).

    Google Scholar 

  52. E. A. Naumov, A. A. Borovikov, A. S. Borisenko, M. V. Zadorozhnyi, and V. V. Murzin, “Physicochemical conditions of formation of epithermal gold–mercury deposits,” Russ. Geol. Geophys. 43, 1055–1064 (2002).

    Google Scholar 

  53. V. B. Naumov, V. A. Dorofeev, and O. F. Mironova, “Physicochemical parameters of the formation of hydrothermal deposits: A fluid inclusion study. I. Tin and tungsten deposits,” Geochem. Int. 49 (10), 1002–1021 (2011).

    Article  Google Scholar 

  54. V. B. Naumov, V. A. Dorofeeva, and O. F. Mironova, “Physicochemical formation parameters of hydrothermal mineral deposits: Evidence from fluid inclusions. II. Gold, silver, lead, and zinc deposits,” Geochem. Int. 52 (6) 433–455 (2014).

    Article  Google Scholar 

  55. V. B. Naumov, V. A. Dorofeeva, and O. F. Mironova, “Physicochemical parameters of formation of hydrothermal deposits: Evidence from fluid inclusions. III. Uranium deposits,” Geochem. Int. 53 (2) 113–132 (2015).

    Article  Google Scholar 

  56. V. B. Naumov, V. A. Dorofeeva, and O. F. Mironova, “Physicochemical parameters of the origin of hydrothermal mineral deposits: Evidence from fluid inclusions. IV. Copper and molybdenum deposits,” Geochem. Int. 55 (8) 711–725 (2017).

    Article  Google Scholar 

  57. V. B. Naumov, V. A. Dorofeeva, and O. F. Mironova, “Principal physicochemical parameters of natural mineral-forming fluids,” Geochem. Int. 47 (8), 777–802 (2009).

    Article  Google Scholar 

  58. V. B. Naumov, V. A. Dorofeeva, O. F. Mironova, and V. Yu. Prokof’ev, “Sources of high-pressure fluids involved in the formation of hydrothermal deposits,” Geochem. Int. 53 (7) 590–606 (2015).

    Article  Google Scholar 

  59. V. B. Naumov, V. I. Kovalenko, and V. A. Dorofeeva, “Magmatic volatile components and their role in the formation of ore-forming fluids,” Geol. Ore Deposits 39 (6), 451–460 (1997).

    Google Scholar 

  60. V. B. Naumov, V. I. Kovalenko, V. A. Dorofeeva, A. V. Girnis, and V. V. Yarmolyuk, “Average compositions of igneous melts from main geodynamic settings according to the investigation of melt inclusions in minerals and quenched glasses of rocks,” Geochem. Int. 48 (12) 1185–1207 (2010).

    Article  Google Scholar 

  61. A. A. Obolensky, L. V. Gushchina, A. S. Borisenko, A. A. Borovikov, and G. G. Pavlova, “Antimony in hydrothermal processes: solubility, conditions of transfer, and metal-bearing capacity of solutions,” Rus. Geol. Geophys. 48, 992–1001 (2007).

    Article  Google Scholar 

  62. L. Palinkas, S. Strmic, J. Spangenberg, W. Prochaska, and U. Herlec, “Ore-forming fluids in the Grubler orebody, Idrija mercury deposit, Slovenia,” Schweiz. Mineral. Petrograph. Mitteilungen 84, 173–188 (2004).

    Google Scholar 

  63. G. G. Pavlova and A. A. Borovikov, “Silver-antimony deposits of Central Asia: physico-chemical model of formation and sources of mineralization,” Austral. J. Earth Sci. 57, 755–775 (2010).

    Article  Google Scholar 

  64. C. E. Peabody and M. T. Einaudi, “Origin of petroleum and mercury in the Culver-Baer cinnabar deposit, Mayacmas district, California,” Econ. Geol. 87, 1078–1103 (1992).

    Article  Google Scholar 

  65. V. Yu. Prokofiev and S. L. Selector, “Fluid inclusion evidence for barbotage and its role in gold deposition at the Darasun goldfield (eastern Transbaykalia, Russia),” Central Europ. J. Geosci. 6 (2), 131–138 (2014).

    Google Scholar 

  66. V. Yu. Prokofyev, Z. V. Afanas’eva, G. F. Ivanova, M. C. Boiron, and Ch. Marignac, “Fluid inclusions in minerals at the Olympiada Au–(Sb–W) deposit, Yenisei Ridge,” Geokhimiya, No. 7, 1012–1029 (1994).

    Google Scholar 

  67. K. Rickers, R. Thomas, and W. Heinrich, “The behavior of trace elements during the chemical evolution of the H2O-, B-, and F-rich granite-pegmatite-hydrothermal system at Ehrenfriedersdorf, Germany: a SXRF study of melt and fluid inclusions,” Mineral. Deposita 41 (3), 229–245 (2006).

    Article  Google Scholar 

  68. C. S. Rombach and R. J. Newberry, “Shotgun deposit: granite porphyry-hosted gold-arsenic mineralization in southwestern Alaska, USA,” Mineral. Deposita 36, 607–621 (2001).

    Article  Google Scholar 

  69. E. I. Sergeeva, V. B. Naumov, and I. L. Khodakovsky, “Conditions of formation of arsenic sulfides in hydrothermal deposits"Э in Geochemistry of Hydrothermal Ore Formation (Nauka, Moscow, 1971), pp. 210–222.

    Google Scholar 

  70. D. Shin, H. I. Park, I. Lee, K.-S. Lee, and J. Hwang, “Hydrothermal As-Bi mineralization in the Nakdong deposits, South Korea: Insight from fluid inclusions and stable isotopes,” Can. Mineral. 42, 1465–1481 (2004).

    Article  Google Scholar 

  71. W. C. Su, L. Y. Zhu, X. Ge, N. P. Shen, X. C. Zhang, and R. Z. Hu, “Infrared microthermometry of fluid inclusions in stibnite from the Dachang antimony deposit, Guizhou,” Acta Petrol. Sinica 31, 918–924 (2015).

    Google Scholar 

  72. J. Tritlla and E. Cardellach, “Fluid inclusions in pre-ore minerals from the carbonate-hosted mercury deposits in the Espadan Ranges (eastern Spain),” Chem. Geol. 137, 91–106 (1997).

    Article  Google Scholar 

  73. Z. Ya Tserysvadze, D. V. Arevadze, and M. I. Kucher, “Physicochemical parameters of formation of arsenic ores by the example of the Lukhum and Kodis-Dzir deposits,” in Geochemistry of Migration of Ore Elements (Nauka, Moscow, 1977), pp. 139–156 [in Russian].

    Google Scholar 

  74. A. I. Tugarinov and V. B. Naumov, “P–T conditions of formation of hydrothermal uranium deposits,” Geokhimiya, No. 2, 131–146 (1969).

    Google Scholar 

  75. V. I. Vasil’ev, “On spongy and dendritic cinnabar in the ores of the Aktash deposits and conditions of its formation,” Geol. Geofiz., No. 2, 77–86 (1962).

  76. V. I. Vasil’ev, A. A. Obolensky, and A. S. Borisenko, “Temperature of formation of mercury deposits,” Dokl. Akad. Nauk SSSR 209 (2), 451–454 (1973).

    Google Scholar 

  77. A. V. Volkov, A. A. Sidorov, N. E. Savva, V. Yu. Prokof’ev, E. E. Kolova, K. Yu. Murashov and M. I. Zemskova, “Epithermal mineralization in the Kedon Paleozoic volcano-plutonic belt, Northeast Russia: geochemical studies of Au–Ag mineralization,” J. Volcanol. Seismol. 11 (1), 1–19 (2017).

    Article  Google Scholar 

  78. T. Wagner and N. J. Cook, “Late-Variscan antimony mineralisation in the Rheinisches Schiefergebirge, NW Germany: evidence for stibnite precipitation by drastic cooling of high-temperature fluid systems,” Mineral. Deposita 35, 206–222 (2000).

    Article  Google Scholar 

  79. Y. L. Xie, L. M. Li, B. G. Wang, G. M. Li, H. F. Liu, Y. X. Li, S. L. Dong, and J. J. Zhou, “Genesis of the Zhaxikang epithermal Pb–Zn–Sb deposit in southern Tibet, China: evidence for a magmatic link,” Ore Geol. Rev. 80, 891–909 (2017).

    Article  Google Scholar 

  80. Z. Zajacz, W. E. Halter, T. Pettke, and M. Guillong, “Determination of fluid/melt partition coefficients by LA-ICP-MS analysis of co-existing fluid and silicate melt inclusions: Controls on element partitioning,” Geochim. Cosmochim. Acta 72 (8), 2169–2197 (2008).

    Article  Google Scholar 

  81. B. V. Zatsikha and Yu. A. Galaburda, “Physicochemical conditions of formation of mercury and arsenic–mercury deposits of Transkarpathia,” Geokhimiya, No. 5, 657–666 (1985).

    Google Scholar 

  82. W. Zhai, X. M Sun., J. Z. Yi, X. G. Zhang, R. W. Mo, and F. Zhou, “Geology, geochemistry, and genesis of orogenic gold-antimony mineralization in the Himalayan Orogen, South Tibet, China,” Ore Geol. Rev. 58, 68–90 (2014).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank M.V. Borisov and V.A. Kovalenker for constructive criticism, which was taken into account when the manuscript was prepared for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Naumov.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naumov, V.B., Dorofeeva, V.A. & Mironova, O.F. Physicochemical Parameters of the Origin of Hydrothermal Mineral Deposits: Evidence from Fluid Inclusions. V. Antimony, Arsenic, and Mercury Deposits. Geochem. Int. 56, 901–914 (2018). https://doi.org/10.1134/S0016702918090082

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702918090082

Keywords:

Navigation