Skip to main content

Advertisement

Log in

Epithermal gold veins in a caldera setting: Banská Hodruša, Slovakia

  • Articles
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The central zone of the large Miocene Štiavnica stratovolcano in the Western Carpathians hosts epithermal Au mineralization of intermediate-sulfidation type, located at deep levels of the historic Rozália base-metal mine at Banská Hodruša. The Au mineralization occurs as subhorizontal veins at the base of pre-caldera andesites, close to the roof of a subvolcanic granodiorite intrusion. The veins are dismembered by a set of quartz–diorite porphyry sills and displaced by the younger, steeply dipping, Rozália base-metal vein, and parallel structures. The base-metal vein structures are related to resurgent horst uplift in the caldera center. The Au mineralization formed during two stages. Based on fluid inclusion evidence, both stages formed from fluids of low salinity (0–3 wt% NaCl eq.), which underwent extensive boiling at moderate temperatures (280–330°C). Variable pressure conditions (39–95 bars, neglecting the effect of CO2) indicate continual opening of the system and a transition from suprahydrostatic towards hydrodynamic conditions at shallow depths (~550 m). The fluid inclusions of the Rozália base-metal vein show homogenization temperature peaks at ~285 and 187°C and salinities between 1 and 4 wt% NaCl eq. Precipitation of Au is considered to be the result of prolonged boiling of fluids and associated decrease in Au solubility. Oxygen and hydrogen isotope data for quartz and carbonate from the Au veins show a relatively homogeneous fluid composition (−2.7 to 1.1‰δ18O, −78 to −62‰δD). The combined δ18Ofluid and δDfluid values suggest a mixed character of fluids, falling between the fields of typical magmatic and meteoric water influenced by δ18Ofluid shift due to fluid–rock isotopic exchange. End stages of open-system boiling and fractionation could have been reached, at least locally. Significantly lower isotopic composition of meteoric fluids associated with Au mineralization compared to those associated with the intrusion-related mineralizations could have resulted from changing paleoclimate and/or analytical problems of extraction of water from fluid inclusions. The proposed genetic model for the Au deposit at Rozália mine highlights the importance of hydrothermal activity during the early stage of caldera collapse. Caldera subsidence established new, convective, fluid-flow paths along marginal caldera faults, which acted as infiltration zones. Major metal precipitation occurred within subhorizontal structures that formed as the result of a collapse-related stress field. A shallow, differentiated magma chamber at the base of the volcano was the likely source of heat and magmatic components for the mineralizing fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Bajnóczi B, Molnár F, Maeda K, Izawa E (2000) Shallow level of low-sulfidation type epithermal systems in the Regéc caldera, central Tokaj Mts., NE-Hungary. Geologica Carphatica 51:217–227

    Google Scholar 

  • Bodnar RJ (1993) Revised equation and table for determing the freezing point depression of H2O–NaCl solutions. Geochim Cosmochim Acta 57:683–684

    Article  CAS  Google Scholar 

  • Bodnar RJ (1994) Synthetic fluid inclusions XII. The system H2O–NaCl. Experimental determination of the halite liquidus and isochores for a 40 wt percent NaCl equiv solution. Geochim Cosmochim Acta 58:1053–1064

    Article  Google Scholar 

  • Bodnar RJ, Reynolds TJ, Kuehn CA (1985) Fluid inclusion systematics in epithermal systems. In: Berger BR, Bethke PM (eds) Geology and geochemistry of epithermal systems. Rev Econ Geol 2:73–97

    Google Scholar 

  • Boullier AM, Robert F (1992) Paleoseismic events recorded in Archean gold-quartz vein networks, Val d’Or, Abitibi, Quebec, Canada. J Struct Geol 14:161–179

    Article  Google Scholar 

  • Campbell AR, Larson PB (1998) Introduction to stable isotope application in hydrothermal systems. In: Richards JP, Larson PB (eds) Techniques in hydrothermal ore deposits geology. Rev Econ Geol 10:173–193

    Google Scholar 

  • Chacko T, Mayeda TK, Clayton RN, Goldsmith JR (1991) Oxygen and carbon isotope fractionations between CO2 and calcite. Geochim Cosmochim Acta 55:2867–2882

    Article  CAS  Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703

    CAS  Google Scholar 

  • Fajbík R (1997) Exploitation of Cu-ores at the Rozália mine in the years 1951–1990 (in Slovak). Spravodaj, Banský výskum Prievidza 3–5:175–178

    Google Scholar 

  • Faure K, Brathwaite RL, Matsuhisa Y (2001) Do hydrogen isotope values of fluid inclusion water in vein quartz accurately reflect water of deposition? In: Cidu R (ed) Water-rock interaction WRI-10 Lisse, Balkema, pp 1517–1520

  • Faure K (2003) δD values of fluid inclusion water in quartz and calcite ejecta from active geothermal systems: do values reflect those of original hydrothermal water? Econ Geol 98:657–660

    Google Scholar 

  • Field CW, Fifarek RH (1985) Light stable isotope systematics in the epithermal environment. In: Berger BR, Bethke PM (eds) Geology and geochemistry of epithermal systems. Rev Econ Geol 2:99–128

    Google Scholar 

  • Fournier RO (1999) Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Econ Geol 94:1193–1212

    Google Scholar 

  • Friedman I, O’Neil JR (1977) Compilation of stable isotope fractionation factors of geochemical interest. In: Fleischer M (ed) Data of Geochemistry, 6th edn. US Geol Surv Prof Pap 440-KK, pp 1–12

  • Gavora S (1988) Drill log of the bore hole BLI-6 in the scale 1:100 (in Slovak). Open file report, Geological Survey of Slovak Republic, Bratislava, p 30

  • Giggenbach WF (1992) Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin. Earth Planet Sci Lett 113:495–510

    Article  Google Scholar 

  • Haas JL (1971) The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure. Econ Geol 66:940–946

    Google Scholar 

  • Haas JL (1976) Physical properties of the coexisting phases and thermochemical properties of the H2O component in boiling NaCl solutions. USGS Bull 1421-A:1–73

    Google Scholar 

  • Háber M, Jeleň S, Kovalenker V, Černyšev I (2001) Model of epithermal ore mineralization of the Banská Štiavnica ore district (in Slovak). Mineralia Slovaca 33:215–224

    Google Scholar 

  • Hedenquist JW, Arribas A Jr (1999a) Epithermal gold deposits: I. Hydrothermal activity and processes, and II. Characteristics and genesis of epithermal deposits. In: Molnár F, Lexa J, Hedenquist JW (eds) Epithermal mineralization of the Western Carpathians. Guidebook Ser Soc Econ Geol 31:13–64

    Google Scholar 

  • Hedenquist JW, Arribas A Jr (1999b) The tops and bottoms of high-sulfidation epithermal ore deposits. In Stanley CJ et al. (eds) Mineral deposits: processes to processing. In: Proceedings of the 5th SGA and 10th IAGOD symposium. Balkema, Rotterdam, pp 515–518

  • Hedenquist JW, Henley RW (1985) Effect of CO2 on freezing point depression measurements on fluid inclusions: evidence from active geothermal systems and applications to epithermal studies. Econ Geol 80:1379–1406

    Google Scholar 

  • Hedenquist JW, Lowenstern JB (1994) The role of magmas in the formation of hydrothermal ore deposits. Nature 370:519–527

    Google Scholar 

  • Hedenquist JW, Izawa E, Arribas A, White NC (1996) Epithermal gold deposits: styles, characteristics, and exploration. Soc Resource Geol Spec Publ 1, 2-sheet poster, p 16

    Google Scholar 

  • Henley RW, Ellis, AJ (1983) Geothermal systems, ancient and modern. Earth Sci Rev 19:1–50

    Article  Google Scholar 

  • Henry CD, Elson HB, McIntosh WC, Heizler MT, Castor SB (1997) Brief duration of hydrothermal activity at Round Mountain, Nevada, determined from 40Ar/39Ar geochronology. Econ Geol 92:807–826

    Google Scholar 

  • Horita J, Wesolowski DJ (1994) Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature. Geochim Cosmochim Acta 58:3425–3437

    Article  Google Scholar 

  • IAEA (1992) Statistical treatment of data on environmental isotopes in precipitation. IAEA Vienna, TECDOC 331

  • Jeleň S, Háber M (2000) Mineralogy of the Rozália mine mineralization types, Hodruša-Hámre (in Slovak). Open file report, Geological Survey of Slovak Republic, Bratislava, p 78

  • Kantor J, Eliáš K, Ďurkovičová J, Rybár M, Garaj M (1983) Sulfur isotopes in selected volcanic-hosted mineralizations, Banská Štiavnica—S, O, C, H/D isotopes (in Slovak). Open file report, Geological Survey of Slovak Republic, Bratislava, p 139

  • Koděra M (1959) Paragenesis and chemistry of the Rozália vein in Hodruša (in Slovak). Geol práce 54:225–263

    Google Scholar 

  • Koděra M (1978) Mineralogical and paragenetical study of the mineralization in deep continuation of the Rozália vein and of the stockwork-disseminated ore mineralization at the Rozália mine and in the bore hole K-5 (in Slovak). Open file report, Comenius University, Bratislava, p 190

  • Koděra P, Rankin AH, Fallick AE (1999) Evolution of fluids associated with a subvolcanic granodiorite pluton. In: Stanley CJ et al (eds) Mineral deposits: processes to processing. In: Proceeding of 5th SGA and 10th IAGOD symposium. Balkema, Rotterdam, pp 51–54

  • Koděra P, Lexa J, Rankin AH, Fallick AE (2004) Fluid evolution in a subvolcanic pluton related to Fe and Pb–Zn mineralization, Banská Štiavnica ore district, Slovakia. Econ Geol 99:1745–1770

    Google Scholar 

  • Konečný P (2002) Evolution of magmatic reservoir underneath the Štiavnica stratovolcano (in Slovak). Unpublished PhD Thesis, Comenius University, Bratislava

  • Konečný V, Lexa J, Hojstričová V (1995) The Central Slovakia Neogene volcanic field: a review. Acta Vulcanologica 7(2):63–78

    Google Scholar 

  • Konečný V, Planderová E, Lexa J (1983) Stratigraphy of the Central Slovakia Neogene volcanic field. Západné Karpaty, Séria Geológia 9:1–205

    Google Scholar 

  • Konečný V, Lexa J, Halouzka R, Hók J, Vozár J, Dublan L, Nagy A, Šimon L, Havrila M, Ivanička J, Hojstričová V, Mihaliková A, Vozárová A, Konečný P, Kováčiková M, Filo M, Marcin D, Klukanová A, Liščák P, Žáková E (1998) Explanations to the geological map of the Štiavnické vrchy and Považský Inovec mountain ranges (Štiavnica stratovolcano) (in Slovak). Geological Survey of Slovak Republic, Bratislava, p 473

  • Kovalenker VA, Jeleň S, Levin KA, Naumov VB, Prokofjev VJ, Rusinov VL (1991) Mineral assemblages and physical–chemical model of the formation of gold–silver-polymetallic mineralization on the deposit Banská Štiavnica (Central Slovakia). Geologica Carpathica 42:291–302

    Google Scholar 

  • Lawrence JR, White WC (1991) The elusive climate signal in the isotopic composition of precipitation. In: Taylor HP Jr, O‘Neil JR, Kaplan IR (eds) Stable isotope geochemistry: a tribute to Samuel Epstein. Geochem Soc Spec Publ 3:169–185

    Google Scholar 

  • Lexa J, Koděra P, Onačila D, Rojkovičová L’, Žáková E Tréger M (1997) A complex resource assessment in the Štiavnica stratovolcano central zone (in Slovak). Open file report, Geological Survey of Slovak Republic, Bratislava, p 225

  • Lexa J, Štohl J, Konečný V (1999a) Banská Štiavnica ore district: relationship among metallogenetic processes and the geological evolution of a stratovolcano. Miner Deposita 34:639–665

    Article  Google Scholar 

  • Lexa J, Koděra P, Prcúch J, Veselý M, Šály J (1999b) Multiple stages of mineralization at the Rozália Mine, Hodruša. In: Molnár F, Lexa J, Hedenquist JW (eds) Epithermal mineralization of the Western Carpathians. Guidebook Ser Soc Econ Geol 31:229–247

    Google Scholar 

  • Lipman PW (1992) Ash-flow calderas as structural controls of ore deposits—recent work and future problems. USGS Bull 2012:L1–L12

    Google Scholar 

  • Matsuhisa Y, Goldsmith JR, Clayton RN (1979) Oxygen isotopic fractionation in the system quartz-albite-anorthite-water. Geochim Cosmochim Acta 43:1131–1140

    Google Scholar 

  • Mat’o L’, Sasvári T, Bebej J, Kraus I, Schmidt R, Kalinaj M (1996) Structurally-controlled vein-hosted mesothermal gold-quartz and epithermal precious/base-metal mineralization in the Hodruša ore field, Central Slovakia Volcanic Field (in Slovak). Mineralia Slovaca 28:455–490

    Google Scholar 

  • Merlivat L, Botter R, Nief G (1963) Fractionnement isotopique au cours de la distillation de l‘eau. J Chim Phys 60:56–59

    Google Scholar 

  • Milési JP, Marcoux E., Sitorus T, Simandjuntak M, Leroy J, Bailly L (1999) Pongkor (west Java, Indonesia): a Pliocene supergene-enriched epithermal Au–Ag–(Mn) deposit. Miner Deposita 34:131–149

    Article  Google Scholar 

  • Mosier DL, Sato T, Page NJ, Singer DA, Berger BR (1992) Descriptive model of Creede epithermal veins. In: Cox DP, Singer DA (eds) Mineral deposit models. USGS Bull 1693:1–145

    Google Scholar 

  • Nemčok M, Lexa J (1990) Evolution of the Basin and Range structure around the Žiar mountain range. Geologica Carpathica 41:229–258

    Google Scholar 

  • Nemčok M, Hók J, Kováč P, Marko F, Madarás J, Bezák V (1993) Tectonics of Western Carpathians during Terciary (in Slovak). In: Rakús M, Vozár J. (eds) Geodynamic model and deep structure of Western Carpathians. Geological Survey of Slovak Republic, Bratislava, pp 263–268

  • Nemčok M, Lexa O, Konečný P (2000) Calculations of tectonic, magmatic and residual stress in the Štiavnica Stratovolcano, Western Carpathians: implications for mineral precipitation paths. Geologica Carpathica 51:19–36

    Google Scholar 

  • Oakes CS, Bodnar RJ, Simonson JM (1990) The system NaCl–CaCl2–H2O. I. The ice liquidus at 1 atm total pressure. Geochim Cosmochim Acta 54:603–610

    Article  Google Scholar 

  • Ohmoto H, Goldhaber MB (1997) Sulfur and carbon isotopes. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 3rd edn. Wiley Interscience, New York, pp 517–611

    Google Scholar 

  • Ohmoto H, Rye RO (1979) Isotopes of sulfur and carbon. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 1st edn. Wiley Interscience, New York, pp 509–567

    Google Scholar 

  • Onačila D, Lexa J, Marsina K, Rojkovičová L’, Káčer Š, Hojstričová V, Žáková E, Štohl J, Konečný V, Nemčok, M, Koděra P, Konečný P, Repčok I, Hurai V, Háber M, Jeleň S, Mat’o L’, Sasvári T, Schmidt R, Zvara I, Grant T (1995) Metalogenetic model and resource assessment of the Štiavnica stratovolcano central zone (in Slovak). Open file report, Geological Survey of Slovak Republic, Bratislava, p 231

  • Pirajno F (1992) Hydrothermal mineral deposits. Springer, Berlin Heidelburg New York, p 709

    Google Scholar 

  • Planderová E, Ziembińska-Tworzydło M, Grabowska I, Kohlman-Adamska A, Konzálová M, Nagy E, Pantić N, Ryłova T, Sadowska A, Słodkowska B, Stuchlik L, Syabryaj S, Wazynska H, Zdražilková N (1993) On paleofloristic and paleoclimatic changes during the Neogene of Eastern and Central Europe on the basis of palynological research. In: Paleofloristic and paleoclimatic changes during Cretaceous and Tertiary. In: Proceeding of International Symposium, Geological Survey of Slovak Republic, Bratislava, pp 119–129

  • Repčok I, Eliáš K, Ďurkovičová J, Ferenčíková E, Kovářová A, Rúčka I (1993) Sulfur isotopes in sulfides of the Hodruša-Štiavnica ore district (in Slovak). Open file report, Geological Survey of Slovak Republic, Bratislava, p 32

  • Roedder E (1984) Fluid inclusions. Rev Mineral Miner Soc Am 12:644

    Google Scholar 

  • Sasvári T, Schmidt R (1994) Structural-geological and paleostress analyze of the Svetozár vein ore field at the 14th level of the Rozália mine in Banská Hodruša (in Slovak). Open file report, Technical University of Košice, Košice, p 104

  • Seward TM (1989) The hydrothermal chemistry of gold and its implications for ore formation: boiling and conductive boiling as examples. Econ Geol Monograph 6:398–404

    Google Scholar 

  • Shepherd TJ, Rankin AH, Alderton DHM (1985) A practical guide to fluid inclusion studies. Blackie and Son, London, p 235

    Google Scholar 

  • Sheppard SMF (1986) Characterization and isotopic variations in natural waters. In: Valley JW, Taylor HP Jr, O’Neil JR (eds) Stable isotopes in high temperature geological processes. Rev Mineral Miner Soc Am 16:165–184

    Google Scholar 

  • Sibson RH, Robert F, Poulsen H (1988) High angle faults, fluid pressure cycling and mesothermal gold-quartz deposits. Geology 16:551–555

    Article  Google Scholar 

  • Sillitoe RH, Hedenquist JW (2003) Linkages between volcanotectonic settings, ore–fluid compositions, and epithermal precious metal deposits. In: Simmons SF, Graham I (eds) Volcanic, geothermal, and ore-forming fluids: rulers and witnesses of processes within the Earth. Econ Geol Spec Publ 10:315–343

    Google Scholar 

  • Simmons SF (1995) Magmatic contributions to low-sulfidation epithermal deposits. In: Thompson JFH (ed) Magmas, fluids and ore deposits. Miner Assoc Can Short Course Ser 23:455–477

    Google Scholar 

  • Simmons SF, Browne PRL (1997) Saline fluid inclusions in sphalerite from the Broadlands-Ohaaki geothermal system: a coincidental trapping of fluids being boiled toward dryness. Econ Geol 92:485–489

    Google Scholar 

  • Simon K (2001) Does δD from fluid inclusion in quartz reflect the original hydrothermal fluid? Chem Geol 177:483–495

    Article  Google Scholar 

  • Singer B, Marchev P (2000) Temporal evolution of arc magmatism and hydrothermal activity, including epithermal gold veins, Borovitsa caldera, southern Bulgaria. Econ Geol 95:1155–1164

    Google Scholar 

  • Slovak Republic Minerals Yearbooks (1996–2003) Geological Survey of Slovak Republic, Bratislava

  • Sterner SM, Hall DL, Bodnar RJ (1988) Synthetic fluid inclusions. V. Solubility relations in the system NaCl–KCl–H2O under vapor-saturated conditions. Geochim Cosmochim Acta 52:989–1006

    Article  Google Scholar 

  • Šály J, Prcúch J (1999) Structural-tectonic and mineralogical conditions of Au mineralization at the Rozália mine (Hodruša-Hámre) (in Slovak). Mineralia Slovaca 3–4:315–316

    Google Scholar 

  • Šály J, Veselý M (1997) Latest results of exploration in the Hodruša-Vyhne ore district in the area of Vyhne-Klokoč and in Hodruša-Rozália mine, focused on Au mineralization. Spravodaj, Banský výskum Prievidza 3–5:221–232

    Google Scholar 

  • Štohl J, Lexa J (1992) Preliminary report on morphology and genesis of gold mineralization at the 14th level of the Rozália mine. Internal report, Archive of the Slovenská Banská s.r.o. Hodruša

  • Štohl J, Hojstričová V, Lexa J, Rojkovičová L’, Žáková E., Gargulák M, Staňa Š, Kantor J, Ďurkovičová J (1990) Evaluation of the bore hole B-1/2000 m, Horná Roveň. Open file report, Geological Survey of Slovak Republic, Bratislava, pp 126

  • Taylor BE (1992) Degassing of H2O from rhyolite magma during eruption and shallow intrusion, and the isotopic composition of magmatic water in hydrothermal systems. In: Hedenquist JW (ed) Magmatic contributions to hydrothermal systems. Geol Surv Jpn Rep 279:190–194

    Google Scholar 

  • Taylor HP Jr (1979) Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. In Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, pp 236–277

    Google Scholar 

  • Truesdell AH, Nathenson M, Rye RO (1977) The effects of subsurface boiling and dilution on the isotopic compositions of Yellowstone thermal waters. J Geophys Res 82:3694–3704

    Google Scholar 

  • Vanko DA, Bodnar RJ, Sterner SM (1988) Synthetic fluid inclusions: VIII. Vapor-saturated halite solubility in part of the system NaCl–CaCl2–H2O, with application to fluid inclusions from oceanic hydrothermal systems. Geochim Cosmochim Acta 52:2451–2456

    Article  Google Scholar 

  • Wilkinson JJ (2001) Fluid inclusions in hydrothermal ore deposits. Lithos 55:229–272

    Article  CAS  Google Scholar 

  • Williams-Jones AE, Samson IM (1990) Theoretical estimation of halite solubility in the system NaCl–CaCl2–H2O: application to fluid inclusions. Can Mineral 28:266–304

    Google Scholar 

Download references

Acknowledgements

We are grateful to the Slovenská Banská s.r.o. for access to underground workings and assistance during the field work. This study has been carried out as a part of the project “Metallogenetic evaluation of the Slovak Republic Territory” financed by the Ministry of Environment of the Slovak Republic. The first author gratefully acknowledges the financial support provided by NATO and the Royal Society of London during the tenure of a NATO-Royal Society Fellowship in the School of Earth Sciences and Geography, Kingston University. We are grateful to Prof. J. Cann FRS for his support. The Scottish Universities Environmental Research Center (SUERC) is funded by a consortium of Scottish Universities and NERC. Reviews by Jeffrey Hedenquist and an anonymous reviewer have significantly improved the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Koděra.

Additional information

Editorial handling: S. Nicolescu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koděra, P., Lexa, J., Rankin, A.H. et al. Epithermal gold veins in a caldera setting: Banská Hodruša, Slovakia. Miner Deposita 39, 921–943 (2005). https://doi.org/10.1007/s00126-004-0449-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-004-0449-5

Keywords

Navigation