Skip to main content
Log in

Refractive index and compressibility of Di64An36 glass over a pressure range of 0–5.0 GPa

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Data on the refractive index, density, and bulk modulus variations of Di64An36 glass, which is used as a model basalt melt, were obtained with a polarization interference microscope and a high-pressure diamond anvil cell at ambient temperature and pressure up to 5.0 GPa. An anomalous decrease in the bulk modulus, K t , was observed in the pressure range 0–1.0 GPa. The values of the zero-pressure isothermal bulk modulus, K t,0 = 22.2, and variation of the bulk modulus with pressure, ΔK t P = 11.35, were derived using a linear equation relating K t and P over the pressure range with the normal behavior of the compressibility. A comparison of our results with previous data on other glasses and melts showed that the bulk moduli of silicate glasses are similar to those of corresponding melts. The values of the pressure coefficient of the bulk moduli, ΔK t P, for glasses derived from linear equations are 2.5 times higher than the pressure derivative of the bulk modulus, K T , derived using the Birch-Murnaghan equation for corresponding melts. The difference in ΔK t P and K T has an effect on the compressibility of glasses and melts. The compressibility of glasses up to 5.0 GPa calculated as (dd 0)/d is almost two times lower than that of corresponding melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Stolper, D. Walker, H. H. Bradford, and J. F. Hays, “Melt Segregation from Partially Molten Source Regions: The Importance of Melt Density and Source Region Size,” J. Geophys. Res. 86(B7), 6261–6271 (1981).

    Article  Google Scholar 

  2. E. Ohtani, “Generation of Komatiite Magma and Gravitaitional Differentiation in the Deep Upper Mantle,” Earth Planet. Sci. Lett. 62, 261–272 (1984).

    Article  Google Scholar 

  3. E. F. Riebling, “Structural Similarities between a Glass and Its Melt,” J. Am. Ceram. Soc. 51, 143–149 (1968).

    Article  Google Scholar 

  4. A. R. Navrotsky, R. Hon, D. F. Weill, and D. J. Henry, “Thermochemistry of Glasses and Liquids in the Systems CaAlSi2O8-NaAlSi3O8, SiO2-CaAl2Si2O8-NaAlSi3O8 and SiO2-Al2O3-CaO-Na2O,” Geochim. Cosmochim. Acta 44, 1409–1423 (1980).

    Article  Google Scholar 

  5. J. R. Sweet and W. B. White, “Study of Sodium Silicate Glasses and Liquids by Infrared Spectroscopy,” Phys. Chem. Glasses 10, 246–251 (1969).

    Google Scholar 

  6. S. K. Sharma, D. Virgo, and B. O. Mysen, “Structure of Melts along the Join SiO2-NaAlSiO4 by Raman Spectroscopy,” Carnegie Inst. Yearbook 77, 652–658 (1978).

    Google Scholar 

  7. F. Seifert, B. O. Mysen, and D. Virgo, “Structural Similarity between Melts and Glass Relevant to Petrological Processes,” Carnegie Inst. Yearbook 80, 300–301 (1981).

    Google Scholar 

  8. B. O. Mysen and P. Richet, Silicate Glasses and Melts, Properties and Structure (Elsever, Amsterdam, 2005).

    Google Scholar 

  9. C. M. Scarfe and D. J. Cronin, “Viscosity-Temperature Relations of Melts at 1 atm in the System Diopside-Albite,” Am. Mineral. 74, 767–771 (1986).

    Google Scholar 

  10. P. Tauber and J. Arndt, “The Relationship between Viscosity and Temperature in the System Anorthite-Diopside,” Chem. Geol. 62, 71–81 (1987).

    Article  Google Scholar 

  11. A. Navrotsky, D. Ziegler, R. Oestrike, and P. Maniar, “Calorimetry of Silicate Melts at 1773 K: Measurement of Enthalpies of Fusion and of Mixing in the System Diopside-Anorthite-Albite and Anorthite-Forsterite,” Contrib. Mineral. Petrol. 101, 122–130 (1989).

    Article  Google Scholar 

  12. B. Guillot and N. Sator, “A Computer Simulation Study of Natural Silicate Melts. Part II: High Pressure Properties,” Geochim. Cosmochim. Acta 71, 4538–4556 (2007).

    Article  Google Scholar 

  13. I. Kushiro, “The System Diopside-Anorthite-Albite: Determination of Compositions of Coexisting Phases,” Carnegie Inst. Yearbook 72, 502–507 (1973).

    Google Scholar 

  14. R. Knoche, D. B. Dingwell, and S. L. Webb, “Non-Linear Temperature Dependence of Liquid Volumes in the System Albite-Anorthite-Diopside,” Contrib. Mineral. Petrol. 111, 61–73 (1992).

    Article  Google Scholar 

  15. R. Knoche, D. B. Dingwell, and S. L. Webb, “Temperature-Dependent Thermal Expansivities of Silicate Melts: The System Anorthite-Diopside,” Geochim. Cosmochim. Acta 56, 689–699 (1992).

    Article  Google Scholar 

  16. S. M. Rigden, T. J. Ahrens, and E. M. Stolper, “Densities of Liquid Silicates at High Pressures,” Science 226, 1071–1074 (1984).

    Article  Google Scholar 

  17. S. M. Rigden, T. J. Ahrens, and E. M. Stolper, “Shock Compression of Molten Silicates: Results for a Model Basaltic Composition,” J. Geophys. Res. 93, 367–382 (1988).

    Article  Google Scholar 

  18. S. M. Rigden, T. J. Ahrens, and E. M. Stolper, “High-Pressure Equation of State of Molten Anorthite and Diopside,” J. Geophys. Res. 94(B7), 9508–9522 (1989).

    Article  Google Scholar 

  19. V. Askarpour, M. H. Manghnani, and P. Richet, “Elastic Properties of Diopside, Anorthite and Grossular Glasses and Liquids: A Brillouin Scattering Study up to 1400 K,” J. Geophys. Res. 98(B10), 17.683–17.689 (1993).

    Article  Google Scholar 

  20. M. L. Rivers and I. S. E. Carmichael, “Ultrasonic Studies of Silicate Melts,” J. Geophys. Res. 92(B9), 9247–9270 (1987).

    Article  Google Scholar 

  21. H. Taniguchi, “Densities of Melts in the System CaMgSi2O6-CaAl2Si2O8 at Low and High Pressures, and Their Structural Significance,” Contrib. Mineral. Petrol. 103, 325–334 (1989).

    Article  Google Scholar 

  22. R. G. Kuryaeva and V. A. Kirkinskii, “Measuring aRefractive Index at High Pressures in a Diamond Anvil Cell,” Prib. Tekh. Eksp. 6, 166–172, (Instr. Exper. Tech. 37(6), 774-778) (1994).

    Google Scholar 

  23. R. G. Kuryaeva and V. A. Kirkinskii, “Refractive Index of SiO2Glass at Hydrostatic Pressures up to 5 GPa,” Fiz. Khim. Stekla, 4, 373–382 Glass Phys. Chem. 21(4), 273–278 (1995).

    Google Scholar 

  24. R. G. Kuryaeva and V. A. Kirkinskii, “Interferential Method of Pressure Measurement in a Diamond Anvil Cell,” Prib. Tekh. Eksp. 3, 145–148 Instr. Experim. Techn. 41(3), 430–432) (1998).

    Google Scholar 

  25. R. G. Kuryaeva and V. A. Kirkinskii, “Influence of High Pressure on the Refractive Index and Density of Tholeiite Basalt Glass,” Phys. Chem. Minerals 25, 48–54 (1997).

    Article  Google Scholar 

  26. H. Mueller, “Theory of Photoelastisity in Amorphous Solids,” Physics 6, 179–184 (1935).

    Article  Google Scholar 

  27. J. Arndt and W. Hummel, “The General Refractivity Formula Applied to Densified Silicate Glasses,” Phys. Chem. Minerals 15, 363–369 (1988).

    Article  Google Scholar 

  28. R. G. Kuryaeva, “Effect of High Pressure on the Refractive Index and Density of Natural Aluminosilicate Glasses of Alkali Basalt Composition in the SiO2-Al2O3-TiO2-Fe2O3-P2O5-FeO-MnO-CaO-MgO-Na2O-K2O System,” Glass Phys. Chem. 30(6), 523–531 (2004).

    Article  Google Scholar 

  29. F. R. Boyd and J. L. England, “Effect of Pressure on the Melting of Diopside, CaMgSi2O6, and Albite, NaAlSi3O8, in the Range up to 50 Kilobars,” J. Geophys. Res. 68(1), 311–323 (1963).

    Article  Google Scholar 

  30. C. M. Scarfe, B. O. Mysen, and D. Virgo, “Changes in Viscosity and Density of Melts of Sodium Disilicate, Sodium Metasilicate, and Diopside Composition with Pressure,” Carnegie Inst. Yearbook 78, 547–552 (1978–1979).

    Google Scholar 

  31. H. Taniguchi and T. Murase, “Some Physical Properties and Melt Structures in the System Diopside-Anorthite,” J. Volcanol. Geotherm. Res. 34, 51–64 (1987).

    Article  Google Scholar 

  32. R. G. Kuryaeva, “Degree of Polymerization of the CaAl2Si2O8 Aluminosilicate Glass,” Glass Phys. Chem. 32(5), 505–510 (2006).

    Article  Google Scholar 

  33. R. G. Kuryaeva and V. A. Kirkinskii, “Refractive Index and Compressibility of Diopside Glass under Pressures up to 5.0 Gigapascals,” Geochem. Int. 38(9), 876–882 (2000).

    Google Scholar 

  34. M. J. Toplis and P. Richet, “Equilibrium Density and Expansivity of Silicate Melts in the Glass Transition Range,” Contrib. Mineral. Petrol. 139, 672–683 (2000).

    Article  Google Scholar 

  35. F. R. Schilling, M. Hauser, S. V. Sinogeikin, and J. D. Bass, “Compositional Dependence of Elastic Properties and Density of Glasses in the System Anorthite-Diopside-Forsterite,” Contrib. Mineral. Petrol. 141, 297–306 (2001).

    Article  Google Scholar 

  36. J. Arndt and D. Stöffler, “Anomalous Changes in Some Properties of Silica Glass Densified at Very High Pressures,” Phys. Chem. Glasses 10(3), 117–124 (1969).

    Google Scholar 

  37. K. Kondo, S. Iio, and A. Sawaoka, “Nonlinear Pressure Dependence of the Elastic Moduli of Fused Quartz up to 3 GPa,” J. Appl. Phys. 52(4), 2826–2831 (1981).

    Article  Google Scholar 

  38. L.-G. Hwa, C.-L. Lu, and L. C. Liu, “Elastic Moduli of Calcium Alumino-Silicate Glasses Studied by Brillouin Scattering,” Materials Res. Bull. 35, 1285–1292 (2000).

    Article  Google Scholar 

  39. F. Birch, “Elasticity and Constitution of the Earth’s Interior,” J. Geophys. Res. 57, 227–286 (1952).

    Article  Google Scholar 

  40. A. W. Lawson, “Pressure as Parameter in Solid Physics,” in Solids under Pressure, Ed. by W. Paul and D. M. Warschauer (McGraw-Hill, New York, 1963).

    Google Scholar 

  41. T. Fujii and I. Kushiro, “Density, Viscosity and Compressibility of Basaltic Liquid at High Pressures,” Carnegie Inst. Yearbook 76, 419–424 (1976–1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. G. Kuryaeva.

Additional information

Original Russian Text © R.G. Kuryaeva, N.V. Surkov, 2012, published in Geokhimiya, 2012, Vol. 50, No. 12, pp. 1140–1146.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuryaeva, R.G., Surkov, N.V. Refractive index and compressibility of Di64An36 glass over a pressure range of 0–5.0 GPa. Geochem. Int. 50, 1026–1031 (2012). https://doi.org/10.1134/S0016702912120038

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702912120038

Keywords

Navigation