Skip to main content
Log in

Non-linear temperature dependence of liquid volumes in the system albite-anorthite-diopside

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The temperature-dependent thermal expansivities of glasses and liquids in the ternary albite-anorthite-diopside have been determined using a combination of calorimetry, dilatometry and Pt and Ir double bob Archimedean densitometry. Supercooled liquid volumes and molar thermal expansivities were determined across the glass transition using a combination of scanning calorimetry and dilatometry, based upon the equivalence of relaxation of volume and enthalpy in the vicinity of the glass transition. Superliquidus volumes were determined using double Pt bob Archimedean densitometry at temperatures up to 1,650°C and double Ir bob densitometry at 1,800°C. Experimental access to liquid volumes near the glass transition temperatures (680–920°C) and at superliquidus temperatures (1,400–1,800°C) for these compositions results in the observation of a nonlinear temperature dependence of molar volume, i.e., temperature-dependent thermal expansivities. The diopside composition wxhibits the largest temperature dependence of thermal expansivity, decreasing by ∼50% between 800 and 1,500°C. Linear extrapolation of the high-temperature volume data of diopside to 810°C would result in a 3% overestimation of the molar voltime. The temperature dependence of the molar volume of anorthite is approximately linear. The thermal expansivities of the liquids in the albite-anorthite-diopside system appear to converge at high temperature. This study uses a combination of methods that allows interpolation rather than extrapolation of the extant melt-volume data into the petrologically meaningful (subliquidus) temperature range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arndt J, Häberle F (1973) Thermal expansion and glass transition temperatures of synthetic glasses of plagioclase-like compositions. Contrib Mineral Petrol 39:175–183

    Google Scholar 

  • Berman H, Daly RA, Spicer HC (1942) Density at room temperature and 1 atmosphere. In: Birch F, et al. (eds) Handbook of Physical Constants Geol Soc Am, No 36, pp 7–26

  • Bottinga Y, Weill DF (1970) Density of liquid silicate systems calculated from partial molar volumes of oxide components. Am J Sci 269:169–182

    Google Scholar 

  • Bottinga Y, Weill D, Richet P (1983) Calculation of the density and thermal expansion coefficient of silicate liquids. Bull Mineral 104:129–138

    Google Scholar 

  • Bowen NL (1915) The crystallization of haplobasaltic, haplodioritic and related magmas. Am J Sci 40:161–185

    Google Scholar 

  • Cukierman M, Uhlmann DR (1973) Viscosity of liquid anorthite. J Geophys Res 78:4920–4923

    Google Scholar 

  • Day DE, Rindone GE (1962) Properties of soda aluminosilicate glasses: 1, refractive index, density, molar refractivity, and infrared absorption spectra. J Am Ceram Soc 45:489–496

    Google Scholar 

  • Dingwell DB (1990) Effects of structural relaxation on cationic tracer diffusion in silicate melts. Chem Geol 82:209–216

    Google Scholar 

  • Dingwell DB (1991) The density of TiO2 liquid. J Am Ceram Soc 74:2718–2719

    Google Scholar 

  • Dingwell DB, Webb SL (1989) Structural relaxation in silicate melts and non-Newtonian melt rheology in geologic processes. Phys Chem Miner 16:508–516

    Google Scholar 

  • Dingwell DB, Webb SL (1990) Relaxation in silicate melts. Eur J Mineral 2:427–449

    Google Scholar 

  • Dingwell DB, Brearley M, Dickinson Jr JE (1988) Melt densities in the Na2O−FeO−Fe2O3−SiO2 system and the partial molar volume of tetrahedrally coordinated ferric iron in silicate melts. Geochim Cosmochim Acta 52:2467–2475

    Google Scholar 

  • Hayward PJ (1976) The mixed alkali effect in aluminosilicate glasses, part 1: the join SiO2−(Na,K)AlSi3O8. Phys Chem Glasses 17:54–61

    Google Scholar 

  • Janz GJ (1980) Molten salts data as reference data for density, surface tension, viscosity and electrical conductance. J Phys Chem Ref Data 9:791–829

    Google Scholar 

  • Knoche R (1990) Untersuchungen der Glastransformationstemperatur im System Albit-Anorthit-Diopsid mit Hilfe der DTA. Diplomarbeit, Georg-August-Universität, Göttingen

  • Knoche R, Dingwell DB, Webb SL (1992a) Temperature-dependent thermal expansivities of silicate melts: the system anorthite-diopside. Geochim Cosmochim Acta 56:689–699

    Google Scholar 

  • Knoche R, Webb SL, Dingwell DB (1992b) A partial molar volume for B2O3 in haplogranitic melt. Can Mineral (accepted)

  • Kushiro I (1973) The system diopside-anorthite-albite: determination of compositions of coexisting phases. Carnegie Inst Washington Yearb 72:502–507

    Google Scholar 

  • Kushiro I (1978) Viscosity and structural changes of albite (NaAlSi3O8) melt at high pressures. Earth Planet Sci Lett 41:87–90

    Google Scholar 

  • Lange RA, Carmichael ISE (1987) Densities of K2O−Na2O−CaO−MgO−FeO−Fe2O3−Al2O3−TiO2−SiO2 liquids: new measurements and derived partial molar properties. Geochim Cosmochim Acta 51:2931–2946

    Google Scholar 

  • Lange RA, Carmichael ISE (1990) Thermodynamic properties of silicate liquids with emphasis on density, thermal expansion and compressibility. In: Nicholls J, Russel JK (eds) Modern Methods of Igneous Petrology. Mineral Soc Am, Washington, pp 25–64

    Google Scholar 

  • Licko T, Danek V (1982) Densities of melts in the system CaSiO3−CaMgSi2O6−Ca2MgSi2O7. Phys Chem Glasses 23:67–71

    Google Scholar 

  • Moynihan CT, Easteal AJ, DeBolt MA, Tucker J (1976) Dependence of fictive temperature of glass on cooling rate. J Am Ceram Soc 59:12–16

    Google Scholar 

  • Navrotsky A, Hon R, Weill DF, Henry DJ (1980) Thermochemistry of glasses and liquids in the system CaMgSi2O6−CaAl2Si2O8−NaAlSi3O8, SiO2−CaAl2Si2O8−NaAlSi3O8 and SiO2−Al2O3−CaO−Na2O. Geochim Cosmochim Acta 44:1409–1423

    Google Scholar 

  • Navrotsky A, Ziegler D, Oestrike R, Maniar P (1989) Calorimetry of silicate melts at 1773K: measurement of enthalpies of fusion and of mixing in the systems diopside-anorthite-albite and anorthite-forsterite. Contrib Mineral Petrol 101:122–130

    Google Scholar 

  • Osborn EF, Tait DB (1952) The system diopside-forsterite-anorthite. Am J Sci Bowen Volume: 413–433

  • Richet P, Bottinga Y (1984a) Anorthite, andesine, wollastonite, diopside, cordierite and pyrope: thermodynamics of melting, glass transition, and properties of the amorphous phase. Earth Planet Sci Lett 67:415–432

    Google Scholar 

  • Richet P, Bottinga Y (1984b) Glass transitions and thermodynamic properties of amorphous SiO2, NaAlSinO2n+2 and KAlSi3O8. Geochim Cosmochim Acta 48:453–470

    Google Scholar 

  • Richet P, Bottinga Y (1986) Thermophysical properties of silicate glasses and liquids. Rev Geophys 24:1–25

    Google Scholar 

  • Rigden S, Ahrens TJ, Stolper EM (1988) Shock compression of molten silicate: results for a model basaltic composition. J Geophys Res 93:367–382

    Google Scholar 

  • Rigden S, Ahrens TJ, Stolper EM (1989) High-pressure equation of state of molten anorthite and diopside. J Geophys Res 94:9508–9522

    Google Scholar 

  • Rivers ML, Carmichael ISE (1987) Ultrasonic studies of silicate melts. J Geophys Res 92:9247–9270

    Google Scholar 

  • Robie RA, Hemmingway BS, Fisher JR (1979) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. USGS Printing Office, Washington

    Google Scholar 

  • Scarfe CM, Cronin DJ (1986) Viscosity-temperature relationships of melts at 1 atm in the system diopside-albite. Am Mineral 74:767–771

    Google Scholar 

  • Scarfe CM, Cronin DJ, Wenzel JT, Kaufmann DA (1983) Viscosity-temperature relationships at 1 atm in the system diopside-anorthite. Am Mineral 68:1083–1088

    Google Scholar 

  • Schairer JF, Yoder Jr HS (1960) The nature of residual liquids from crystallization, with data on the system nepheline-diopside-silica. Am J Sci 258 A:273–283

    Google Scholar 

  • Seifert FA, Mysen BO, Virgo D (1982) Three-dimensional network structure of quenched melts (glasses) in the system SiO2−NaAlO2, SiO2−CaAl2O4 and SiO2−MgAl2O4. Am J Sci 67:696–717

    Google Scholar 

  • Stebbins JF, Weill DE, Carmichael ISE, Moret LK (1982) High temperature heat contents and heat capacities of liquids and glasses in the system NaAlSi3O8−CaAl2Si2O8. Contrib Mineral Petrol 80:276–284

    Google Scholar 

  • Stebbins JF, Carmichael ISE, Weill DE (1983) The high temperature liquid and glass heat contents and the heats of fusion of diopside, albite, sanidine and nepheline. Am Mineral 68:717–730

    Google Scholar 

  • Stein DJ, Stebbins JF, Carmichael ISE (1986) Density of molten sodium aluminosilicates. J Am Ceram Soc 69:396–399

    Google Scholar 

  • Taniguchi H (1989) Densities of melts in the system CaMgSi2O6−CaAl2Si2O8 at low and high pressures, and their structural significance. Contrib Mineral Petrol 103:325–334

    Google Scholar 

  • Tauber P (1987) Viskositätsuntersuchungen im Modellsystem Anorthit-Albit-Diopsid. Dissertation. Eberhard-Karls-Universität, Tübingen

  • Tauber P, Arndt J (1987) The relationship between viscosity and temperature in the system anorthite-diopside. Chem Geol 62:71–81

    Google Scholar 

  • Webb SL (1992) Shear, enthalpy, volume and structural relaxation in silicate melts. Chem Geol (accepted)

  • Webb SL, Knoche R, Dingwell DB (1992) Determination of silicate liquid thermal expansivity using dilatometry and calorimetry. Eur J Mineral 4:95–104

    Google Scholar 

  • Weill DF, Hon R, Navrotsky A (1980) The igneous system CaMgSi2O6−CaAl2Si2O8−NaAlSi3O8: variations on a classic theme by Bowen. In: Hargraves RB (ed) Physics of Magmatic Processes. Princeton University Press, Princeton, pp 49–92

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knoche, R., Dingwell, D.B. & Webb, S.L. Non-linear temperature dependence of liquid volumes in the system albite-anorthite-diopside. Contrib Mineral Petrol 111, 61–73 (1992). https://doi.org/10.1007/BF00296578

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00296578

Keywords

Navigation