Skip to main content
Log in

High-precision measurements of the compressibility and the electrical resistivity of bulk g-As2Te3 glasses at a hydrostatic pressure up to 8.5 GPa

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

High-precision studies of the volume and the electrical resistivity of g-As2Te3 glasses at a high hydrostatic pressure up to 8.5 GPa at room temperature are performed. The glasses exhibit elastic behavior in compression only at a pressure up to 1 GPa, and a diffuse structural transformation and inelastic density relaxation (logarithmic in time) begin at higher pressures. When the pressure increases further, the relaxation rate passes through a sharp maximum at 2.5 GPa, which is accompanied by softening the relaxing bulk modulus, and then decreases, being noticeable up to the maximum pressure. When pressure is relieved, an unusual inflection point is observed in the baric dependence of the bulk modulus near 4 GPa. The polyamorphic transformation is only partly reversible and the residual densification after pressure release is 2%. In compression, the electrical resistivity of the g-As2Te3 glasses decreases exponentially with increasing pressure (at a pressure up to 2 GPa); then, it decreases faster by almost three orders of magnitude in the pressure range 2–3.5 GPa. At a pressure of 5 GPa, the electrical resistivity reaches 10–3 Ω cm, which is characteristic of a metallic state; this resistivity continues to decrease with increasing pressure and reaches 1.7 × 10–4 Ω cm at 8.1 GPa. The reverse metal–semiconductor transition occurs at a pressure of 3 GPa when pressure is relieved. When the pressure is decreased to atmospheric pressure, the electrical resistivity of the glasses is below the initial pressure by two–three orders of magnitude. Under normal conditions, both the volume and the electrical resistivity relax to quasi-equilibrium values in several months. Comparative structural and Raman spectroscopy investigations demonstrate that the glasses subjected to high pressure have the maximum chemical order. The glasses with a higher order have a lower electrical resistivity. The polyamorphism in the As2Te3 glasses is caused by both structural changes and chemical ordering. The g-As2Te3 compound is the first example of glasses, where the reversible metallization under pressure has been studied under hydrostatic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Wuttig and N. Yamada, Nat. Mater. 6, 824 (2007).

    Article  ADS  Google Scholar 

  2. J. Cornet and D. Rossier, J. Non-Cryst. Solids 12, 85 (1973).

    Article  ADS  Google Scholar 

  3. Q. Ma, D. Raoux and S. Benazeth, Phys. Rev. B 48, 16332 (1993).

    Article  ADS  Google Scholar 

  4. K. Abe, O. Uemura, T. Usuki, et al., J. Non-Cryst. Solids 232–234, 682 (1998).

    Article  Google Scholar 

  5. G. Faigel, L. Granasy, I. Vincze, and H. de Waard, J. Non-Cryst. Solids 57, 411 (1983).

    Article  ADS  Google Scholar 

  6. P. Jóvári, S. N. Yannopoulos, I. Kaban, et al., J. Chem. Phys. 129, 214502 (2008).

    Article  ADS  Google Scholar 

  7. S. Sen, S. Joshi, B. G. Aitken, and S. Khalid, J. Non-Cryst. Solids 354, 4620 (2008).

    Article  ADS  Google Scholar 

  8. A. Tverjanovich, K. Rodionov, and E. Bychkov, J. Solid State Chem. 190, 271 (2012).

    Article  ADS  Google Scholar 

  9. D. C. Kaseman, I. Hung, K. Lee, et al., J. Phys. Chem. B 119, 2081 (2015).

    Article  Google Scholar 

  10. M. Dongol, T. Gerber, M. Hafiz, et al., J. Phys.: Condens. Matter 18, 6213 (2006).

    ADS  Google Scholar 

  11. T. G. Edwards, E. L. Gjersing, S. Sen, et al., J. Non-Cryst. Solids 357, 3036 (2011).

    Article  ADS  Google Scholar 

  12. M. Tenhover, P. Boolchand, and W. J. Bresser, Phys. Rev. B 27, 7533 (1983).

    Article  ADS  Google Scholar 

  13. S. S. K. Titus, R. Chatterjee, S. Asokan, and A. Kumar, Phys. Rev. B 48, 14650 (1993).

    Article  ADS  Google Scholar 

  14. S. Sen, S. Soyer Uzun, C. J. Benmore, and B. J. Aitken, J. Phys.: Condens. Matter 22, 405401 (2010).

    Google Scholar 

  15. A. Tverjanovich, M. Yagodkina, and V. Strykanov, J. Non-Cryst. Solids 223, 86 (1998).

    Article  ADS  Google Scholar 

  16. H. Endo, H. Hoshino, H. Ikemoto, and T. Miyanaga, J. Phys.: Condens. Matter 12, 6077 (2000).

    ADS  Google Scholar 

  17. C. Otjacques, J. Raty, F. Hippert, et al., Phys Rev. B 82, 054202 (2010).

    Article  ADS  Google Scholar 

  18. G. Parthasarathy and E. S. R. Gopal, Bull. Mater. Sci. 7, 271 (1985).

    Article  Google Scholar 

  19. S. Minomura, in Amorphous Semiconductors: Technologies and Devices, Ed. by Y. Hamakawa (North Holland, Amsterdam, 1978), p. 245.

  20. N. Sakai and H. Fritzsche, Phys. Rev. B 15, 973 (1977).

    Article  ADS  Google Scholar 

  21. I. V. Berman, N. V. Brandt, I. E. Kostyleva, et al., JETP Lett. 43, 62 (1986).

    ADS  Google Scholar 

  22. G. Ramani, A. Giridhar, and A. K. Singh, Philos. Mag. B 39, 385 (1979).

    Article  ADS  Google Scholar 

  23. J. Kristofic, J. J. Mares, and V. Smid, Phys. Status Solidi A 89, 333 (1985).

    Article  ADS  Google Scholar 

  24. K. Ramesh, J. Phys. Chem. B 118, 8848 (2014).

    Article  Google Scholar 

  25. C. J. Benmore and A. K. Soper, The SANDALS Manual: A Guide to Performing Experiments on the Small Angle Neutron Diffractometer for Amorphous and Liquid Samples at ISIS (Rutherford-Appleton Labor., 1998).

    Google Scholar 

  26. A. C. Hannon, W. S. Howells, and A. K. Soper, Inst. Phys. Conf. Ser. 107, 193 (1990).

    Google Scholar 

  27. O. L. G. Alderman, M. Liška, J. Macháček, et al., J. Phys. Chem. C 120, 553 (2016).

    Article  Google Scholar 

  28. A. P. Hammersley, S. O. Svensson, M. Hanfland, et al., High Press. Res. 14, 235 (1996).

    Article  ADS  Google Scholar 

  29. C. N. J. Wagner, J. Non-Cryst. Solids 31, 1 (1978).

    Article  ADS  Google Scholar 

  30. L. B. Skinner, C. J. Benmore, and J. B. Parise, Nucl. Instr. Methods Phys. Res. A 662, 61 (2012).

    Article  ADS  Google Scholar 

  31. L. G. Khvostantsev, V. N. Slesarev, and V. V. Brazhkin, High Press. Res. 24, 371 (2004).

    Article  ADS  Google Scholar 

  32. O. B. Tsiok, V. V. Bredikhin, V. A. Sidorov, and L. G. Khvostantsev, High Press. Res. 10, 523 (1992).

    Article  ADS  Google Scholar 

  33. O. B. Tsiok, V. V. Brazhkin, A. G. Lyapin, and L. G. Khvostantsev, Phys. Rev. Lett. 80, 999 (1998).

    Article  ADS  Google Scholar 

  34. V. V. Brazhkin, E. Bychkov, and O. B. Tsiok, Phys. Chem. B 120, 358 (2016).

    Article  Google Scholar 

  35. V. V. Brazhkin, O. B. Tsiok, and J. Katayama, JETP Lett. 89, 244 (2009).

    Article  ADS  Google Scholar 

  36. V. V. Struzhkin, A. F. Goncharov, R. Caracas, et al., Phys. Rev. B 77, 165133 (2008).

    Article  ADS  Google Scholar 

  37. D. J. E. Mullen and W. Nowacki, Z. Kristallogr. 136, 48 (1972).

    Article  Google Scholar 

  38. A. R. Kampf, R. T. Downs, R. M. Housley, et al., Miner. Mag. 75, 2857 (2011).

    Article  Google Scholar 

  39. A. C. Stergiou and P. J. Rentzeperis, Z. Kristallogr. 173, 185 (1985).

    Article  Google Scholar 

  40. E. Lorch, J. Phys. C 2, 229 (1969).

    Article  ADS  Google Scholar 

  41. J. S. Lannin, Phys. Rev. B 15, 3863 (1977).

    Article  ADS  Google Scholar 

  42. J. R. Magana and J. S. Lannin, Phys. Rev. Lett. 51, 2398 (1983).

    Article  ADS  Google Scholar 

  43. A. Mendoza-Galvan, E. Garcıa-Garcıa, Y. V. Vorobieva, and J. Gonzalez-Hernandez, Microelectron. Eng. 51–52, 677 (2000).

    Article  Google Scholar 

  44. S. I. Simdyankin, S. R. Elliott, Z. Hajnal, et al., Phys. Rev. B 69, 144202 (2004).

    Article  ADS  Google Scholar 

  45. G. J. Carron, Acta Crystallogr. 16, 338 (1963).

    Article  Google Scholar 

  46. A. S. Kanishcheva, Yu. N. Mikhailov, and A. P. Chernov, Neorg. Mater. 18, 949 (1982).

    Google Scholar 

  47. A. C. Stergiou and P. J. Rentzeperis, Z. Kristallogr. 172, 139 (1985).

    Article  Google Scholar 

  48. C. Morin, S. Corallini, J. Carreaud, et al., Inorg. Chem. 54, 9936 (2015).

    Article  Google Scholar 

  49. M. Deli, D. Houphouet Boigny, and G. Kra, J. Non-Oxide Glasses 1, 59 (2010).

    Google Scholar 

  50. T. E. Faber and J. M. Ziman, Philos. Mag. 11, 153 (1965).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Brazhkin.

Additional information

Original Russian Text © V.V. Brazhkin, E. Bychkov, O.B. Tsiok, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 152, No. 3, pp. 530–546.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brazhkin, V.V., Bychkov, E. & Tsiok, O.B. High-precision measurements of the compressibility and the electrical resistivity of bulk g-As2Te3 glasses at a hydrostatic pressure up to 8.5 GPa. J. Exp. Theor. Phys. 125, 451–464 (2017). https://doi.org/10.1134/S1063776117080155

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117080155

Navigation