Skip to main content
Log in

Physicochemical parameters of the formation of hydrothermal deposits: A fluid inclusion study. I. Tin and tungsten deposits

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The author’s database, which presently includes data from more than 18500 publications on fluid and melt inclusions in minerals and is continuing to be appended, was used to generalize results on physicochemical parameters of the formation of hydrothermal deposits and occurrences of tin and tungsten. The database includes data on 320 tin and tin-tungsten deposits and occurrences and 253 tungsten and tungstentin deposits around the world. For most typical minerals of these deposits (quartz, cassiterite, tungsten, scheelite, topaz, beryl, tourmaline, fluorite, and calcite), histograms of homogenization temperatures of fluid inclusions were plotted. Most of 463 determinations made for cassiterite are in the range of 300–500°C with maximum at 300–400°C, while those for wolframite and scheelite (453 determinations) fall in the range of 200–400°C with maximum at 200–300°C. Representative material on pressures of hydrothermal fluids included 330 determinations for tin and 430 determinations for tungsten objects. It was found that premineral, ore, and postmineral stages spanned a wide pressure range from 70–110 bar to 6000–6400 bar. High pressures of the premineral stages at these deposits are caused by their genetic relation with felsic magmatism. Around 50% of pressure determinations lie in the range of 500–1500 bar. The wide variations in total salinity and temperatures (from 0.1 to 80 wt % NaCl equiv and 20–800°C) were obtained for mineral-forming fluids at the tin (1800 determinations) and tungsten (2070 determinations) objects. Most of all determinations define a salinity less than 10 wt % NaCl equiv. (∼60%) and temperature range of 200–400°C (∼70%). The average composition of volatile components of fluids determined by different methods is reported. Data on gas composition of the fluids determined by Raman spectroscopy are examined. Based on 180 determinations, the fluids from tin objects have the following composition (in mol %): 41.2 CO2, 39.5 CH4, 19.15 N2, and 0.15 H2S. The volatile components of tungsten deposits (190 determinations) are represented by 56.1 CO2, 30.7 CH4, 13.2 N2, and 0.01 H2S. Thus, the inclusions of tungsten deposits are characterized by higher CO2 content and lower (but sufficiently high) contents of CH4 and N2. The concentrations of tin and tungsten in magmatic melts and mineral-forming fluids were estimated from analysis of individual inclusions. The geometric mean Sn contents are 87 ppm (+ 610 ppm/−76 ppm) in the melts (569 determinations) and 132 ppm (+ 630 ppm/−109 ppm) in the fluids (253 determinations). The geometric mean W values are 6.8 ppm (+ 81/−6.2 ppm) in the magmatic melts (430 determinations) and 30 ppm (+ 144 ppm/−25 ppm) in the mineral-forming fluids (391 determinations).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. B. Naumov, V. A. Dorofeeva, and O. F. Mironova, “Principal Physicochemical Parameters of Natural Mineral-Forming Fluids,” Geochem. Int. 47, 777–802 (2009)].

    Article  Google Scholar 

  2. O. F. Mironova, “Volatile Components of Natural Fluids: Evidence from Inclusions in Minerals: Methods and Results,” Geochem. Int. 48, 83–90 (2010).

    Article  Google Scholar 

  3. W. M. Little, “Inclusions in Cassiterite and Associated Minerals,” Economic Geology 55, 485–509 (1960).

    Article  Google Scholar 

  4. W. C. Kelly and F. S. Turneaure, “Mineralogy, Paragenesis and Geothermometry of the Tin and Tungsten Deposits of the Eastern Andes, Bolivia,” Econ. Geol. 65, 609–680 (1970).

    Article  Google Scholar 

  5. G. G. Grushkin and I. G. Khel’vas, “Physicochemical Conditions of Formation of the Khingan Tin Deposit,” Zap. Vses. Mineral. O-va 103(2), 219–240 (1974).

    Google Scholar 

  6. A. M. Kokorin and D. K. Kokorina, “Temperature of Zoning of the Silin Tin-Polymetallic Deposit, Kavalerovo District,” in Problems of Metallogeny and Zoning of the Deposits of the Pacific Ore Belt (Vladivostok, 1974), pp. 196–207 [in Russian].

  7. A. M. Kokorin and D. K. Kokorina, “Temperature Conditions of Formation of the Lifudzinskoe Deposit, Kavalerovo District,” in Problems of Metallogeny and Zoning of the Deposits of the Pacific Ore Belt (Vladivostok, 1974), pp. 174–187 [in Russian].

  8. J. Durisova, “Geothermometry in the Minerals from the Tin Deposits of the Eastern Krusna Hory Mts. (Chechoslovakia),” Mineralization Associated with Acid Magmatism 3, 325–335 (1978).

    Google Scholar 

  9. V. B. Naumov and A. L. Sokolov, “Genetic Relations of Granites and Tin Veins of the Industrial’noe Deposit: Evidence from Mineral Inclusion Data,” Geol. Rudn. Mestorozhd., No. 4, 74–80 (1981).

  10. A. N. Labutin and V. B. Naumov, “Conditions of Formation of the Butugychak Cassiterite-Feldspar Deposit,” Geokhimiya, No. 2, 179–185 (1985).

  11. G. Andrehs, “Mikrothermometrische Untersuchungen Am Brekzienkorper Gottesberg Im Erzgebirge,” Z. Geol. Wiss. 13(5), 629–637 (1985).

    Google Scholar 

  12. M. I. Luchitskaya, V. B. Naumov, and V. L. Barsukov, “Change of Composition and Concentration of Mineral-Forming Solutions during Formation of the Khingan Tin Deposit,” Dokl. Akad. Nauk SSSR 288(4), 970–972 (1986).

    Google Scholar 

  13. A. Sugaki, S. Kojima, and N. Shimada, “Fluid Inclusion Studies of the Polymetallic Hydrothermal Ore Deposits in Bolivia,” Miner. Deposita 23, 9–15 (1988).

    Article  Google Scholar 

  14. G. D. Layne and E. T. C. Spooner, “The JC Tin Skarn Deposit, Southern Yukon Territory: I. Geology, Paragenesis, and Fluid Inclusion Microthermometry,” Economic Geology 86, 29–47 (1991).

    Article  Google Scholar 

  15. A. S. Borisenko, A. I. Kholmogorov, A. A. Borovikov, et al., “Composition and Metal Potential of the Ore-Forming Solutions of the Deputatskoe Tin Deposit, Yakutia,” Geol. Geofiz. 38(11), 1830–1841 (1997).

    Google Scholar 

  16. J. S. Bettencourt, Jr. W. B. Leite, C. L. Goraieb, et al., “Sn-Polymetallic Greisen-Type Deposits Associated with Late-Stage Rapakivi Granites, Brazil: Fluid Inclusion and Stable Isotope Characteristics,” Lithos 80, 363–386 (2005).

    Article  Google Scholar 

  17. N. S. Bortnikov, A. I. Khanchuk, T. L. Krylova, et al., “Geochemistry of the Mineral-Forming Fluids in Some Tin-Bearing Hydrothermal Systems of Sikhote Alin, the Russian Far East,” Geol. Ore Dep. 47(6), 488–516 (2005).

    Google Scholar 

  18. C. Minghai, M. Jingwen, L. Ting, et al., “The Origin of the Tongkeng-Chango Tin Deposit, Dachang Metal District, Guangxi, China: Clues from Fluid Inclusions and He Isotope Systematics,” Miner. Deposita 42, 613–626 (2007).

    Article  Google Scholar 

  19. I. A. Baksheev, P. L. Tikhomirov, V. O. Yapaskurt, et al., “Tourmaline of the Mramorny Tin Cluster, Chukotka Peninsula, Russia,” Can. Mineral. 47, 1177–1194 (2009).

    Article  Google Scholar 

  20. R. M. K. Borges, R. N. N. Villas, K. Fuzikawa, et al., “Phase Separation, Fluid Mixing, and Origin of the Greisens and Potassic Episyenite Associated with the Agua Boa Pluton, Pitinga Tin Province, Amazonian Craton, Brazil,” J. South Am. Earth Sci. 27, 161–183 (2009).

    Article  Google Scholar 

  21. A. M. Kokorin and D. K. Kokorina, “Physicochemical Features of the Formation of the Iul’tin Tin-Tungsten Deposit,” in Problems of Metallogeny and Zoning of the Deposits of the Pacific Ore Belt (Vladivostok, 1974), pp. 147–163 [in Russian].

  22. V. B. Naumov and B. N. Naumenko, “Conditions of Formation of the Svetloe Tin-Tungsten Deposit, Chukotka,” Geol. Rudn. Mestorozhd., No. 5, 84–92 (1979).

  23. W. C. Kelly and R. O. Rye, “Geology, Fluid Inclusion, and Stable Isotope Studies of the Tin-Tungsten Deposits of Panasqueira, Portugal,” Econ. Geol. 74, 1721–1822 (1979).

    Article  Google Scholar 

  24. N. J. Jackson, J. M. Moore, and A. H. Rankin, “Fluid Inclusions and Mineralization at Cligga Head, Cornwall, England,” J. Geol. Soc. 134, 343–349 (1997).

    Article  Google Scholar 

  25. R. Thomas, “Ergebnisse Der Thermobarogeochemischen Untersuchungen An Flussigkeitseinschlussen in Mineralen Der Postmagmatischen Zinn-Woifram-Mineralisation Des Erzgebirges,” Freiberger Forschungshefte, 370, 5–85 (1982).

    Google Scholar 

  26. M. Y. Kim, “Fluid Inclusion Studies Relating To Tungsten-Tin-Copper Mineralization at the Ohtani Mine, Japan,” J. Geosci. Osaka City Univ. 24, 109–162 (1981).

    Google Scholar 

  27. M. Ahmad, “Fluid Inclusion Study of Greisens Associated with the Nicholson Granite Complex, Murphy Inlier, Northern Territory,” Austral. J. Earth Sci. 36, 207–218 (1989).

    Article  Google Scholar 

  28. G. F. Ivanova, V. B. Naumov, V. S. Karpukhina, and E. V. Cherkasova, “Genesis of Rare-Metal (W, Mo, Sn, and Be) Mineralization in Southeastern Mongolia: Geochemical Features and Physicochemical Parameters,” Geochem. Int. 40, 751–761 (2002).

    Google Scholar 

  29. Y. Zeng, J. Liu, and Y. Zhu, “Short-Chain Carboxylates in High-Temperature Ore Fluids of W-Sn Deposits in South China,” Geochem. J 36, 219–234 (2002).

    Google Scholar 

  30. H.-Z. Lu, Y. Liu, C. Wang, et al., “Mineralization and Fluid Inclusion Study of the Shizhuyuan W-Sn-Bi-Mo-F Skarn Deposit, Hunan Province, China,” Econ. Geol. 98, 955–974 (2003).

    Article  Google Scholar 

  31. B. Yokart, S. M. Barr, and A. E. Williams-Jones, and A.S. MacDonald, “Late-Stage Alteration and Tin-Tungsten Mineralization in the Khuntan Batholith, Northern Thailand,” J. Asian Earth Sci. 21, 999–1018 (2003).

    Article  Google Scholar 

  32. A. K. Somarin and P. Ashley, “Hydrothermal Alteration and Mineralization of the Glen Eden Mo-W-Sn Deposit: a Leucogranite-Related Hydrothermal System, South New England Orogen, NSW, Australia,” Miner. Deposita 39, 282–300 (2004).

    Article  Google Scholar 

  33. V. B. Naumov and G. F. Ivanova, “Barothermometric Characteristics of the Conditions of Formation of Tungsten Deposits,” Geokhimiya, No. 6, 627–641 (1971).

  34. V. B. Naumov and G. F. Ivanova, “P-T Conditions of Fluorite Formation at the Tungsten Deposit,” Geokhimiya, No. 3, 387–400 (1975).

  35. G. F. Ivanova, Mineralogy and Geochemistry of Tungsten Mineralization of Mongolia (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  36. G. F. Ivanova, Z. M. Motorina, and V. B. Naumov, “Features of Formation of Mineral Assemblages of the Yugodzyr’ Molybdenum-Tungsten Deposit, Mongolia,” Geol. Rudn. Mestorozhd., No. 3, 26–36 (1977).

  37. V. B. Naumov, G. F. Ivanova, and Z. M. Motorina, “Conditions of Formation of the Tungsten, Tin-Tungsten, and Molybdenum-Tungsten Deposits,” in Main Parameters of Natural Mineral Formation (Nauka, Novosibirsk, 1979), Vol. 2, pp. 53–62 [in Russian].

    Google Scholar 

  38. F. Noronha, “Caracteristiques Physico-Chimiques Des Fluides Associes a La Genese Du Gisement De Tungstene De Borralha (Nord Portugal),” Bull. Mineral 107, 273–284 (1984).

    Google Scholar 

  39. G. F. Ivanova, I. E. Maksimyuk, and V. B. Naumov, “Geochemical Features of the Granitoids and Tungsten Mineralization of the Kyzyl-Tau Deposit, Western Mongolia,” Geokhimiya, No. 6, 858–869 (1985).

  40. G. F. Ivanova, V. B. Naumov, and L. A. Kopneva, “Physicochemical Parameters of Scheelite Formation at the Deposits of Different Genetic Types: Fluid Inclusion Data,” Geokhimiya, No. 10, 1431–1442 (1986).

  41. G. F. Ivanova and V. B. Naumov, “Main Parameters of the Hydrothermal Solutions Forming Tungsten Deposits,” Geokhimiya, No. 7, 925–935 (1989).

  42. G. F. Ivanova, O. F. Mironova, and V. B. Naumov, “Evolution of Ore-Bearing Solutions of the Yugodzyr’ Mo-W Deposit, Mongolia: Evidence from Fluid Inclusion Data,” Geokhimiya, No. 12, 1497–1505 (1992).

  43. T. Graupner, U. Kempe, E. Dombon, et al., “Fluid Regime and Ore Formation in the Tungsten(-Yttrium) Deposits of Kyzyltau (Mongolian Altai): Evidence for Fluid Variability in Tungsten-Tin Ore Systems,” Chem. Geol. 154, 21–58 (1999).

    Article  Google Scholar 

  44. G. F. Ivanova, G. M. Kolesov, V. S. Karpukhina, and E. V. Cherkasova, “Rare-Earth Elements and the Genesis of Ore Mineralization at the Kalgutinskoe Tungsten Ore Field, Gornyi Altai,” Geochem. Int. 44, 508–515 (2006).

    Article  Google Scholar 

  45. C. S. So, K. L. Shelton, D. E. Seidemann, and B. J. Skinner, “The Dae Hwa Tungsten-Molybdenum Mine, Republic of Korea: a Geochemical Study,” Econ. Geol. 78, 920–930 (1983).

    Article  Google Scholar 

  46. G. F. Ivanova and V. B. Naumov, Genesis of Tungsten Deposit, in Geology of Tungsten. International Geological Correlation Programme. Project 26 “MAWAM,” Ed. by A. A. Beus (Unesco, 1986), pp. 217–244.

  47. T. A. P. Kwak, R. G. Taylor, and I. R. Plimer, Occurrence and Genesis of Primary Tungsten Deposits in Australia, in Geology of Tungsten. International Geological Correlation Programme. Project 26 “MAWAM,” Ed. by A. A. Beus (Unesco, 1986), pp. 245–270.

  48. K. L. Shelton, C. S. So, D. M. Rye, and M.-E. Park, “Geologic, Sulfur Isotope, and Fluid Inclusion Studies of the Sannae W-Mo Mine, Republic of Korea: Comparison of Sulfur Isotope Systematics in Korean W Deposits,” Econ. Geol. 81, 430–446 (1986).

    Article  Google Scholar 

  49. Y. Shibue, “Fluid Inclusion Study on Some Minerals from the Fujigatani and Kuga Deposits, Yamaguchi Prefecture, South-West Japan,” Mining Geol. 37, 259–266 (1987).

    Google Scholar 

  50. P. Schenk, R. Holl, G. F. Ivanova, et al., “Fluid Inclusion Studies of the Felbertal Scheelite Deposit,” Geolog. Rundsch. 79(2), 451–466 (1990).

    Article  Google Scholar 

  51. L. Bailly, L. Grancea, and K. Kouzmanov, “Infrared Microthermometry and Chemistry of Wolframite from the Baia Sprie Epithermal Deposit, Romania,” Econ. Geol. 97, 415–423 (2002).

    Article  Google Scholar 

  52. X. M. Yang, D. R. Lentz, G. X. Chi, and T. K. Kyser, “Fluid-Mineral Reaction in the Lake George Granodiorite, New Brunswick, Canada: Implications for Au-W-Mo-Sb Mineralization,” Can. Mineral. 42, 1443–1464 (2004).

    Article  Google Scholar 

  53. V. Luders, R. L. Romer, H. A. Gilg, et al., “A Geochemical Study of the Sweet Home Mine, Colorado Mineral Belt, USA: Hydrothermal Fluid Evolution Above a Hypothesized Granite Cupola,” Miner. Deposita 44, 415–434 (2009).

    Article  Google Scholar 

  54. N. P. Ermakov, Studies of Mineral-Forming Solutions (Khar’k. Univ., Kharkov, 1950) [in Russian].

    Google Scholar 

  55. F. G. Smith and W. M. Little, “Filling Temperatures of H2O-CO2 Fluid Inclusions and Their Significance in Geothermometry,” Can. Mineral. 6, 380–388 (1959).

    Google Scholar 

  56. A. R. Campbell and S. Robinson-Cook, “Infrared Fluid Inclusion Microthermometry on Coexisting Wolframite and Quartz,” Econ. Geol. 82(6), 1640–1645 (1987).

    Article  Google Scholar 

  57. A. R. Campbell, S. Robinson-Cook, and C. Amindyas, “Observation of Fluid Inclusions in Wolframite from Panasqueira, Portugal,” Bull. Mineral 111 (3–4), 251–256 (1988).

    Google Scholar 

  58. V. Lüders, “Contribution of Infrared Microscopy To Fluid Inclusions Studies in Some Opaque Minerals (Wolframite, Stibnite, Bournonite): Metallogenic Implications,” Econ. Geol. 91, 1462–1468 (1996).

    Article  Google Scholar 

  59. L. Bailly, L. Grancea, and K. Kouzmanov, “Infrared Microthermometry and Chemistry of Wolframite from the Baia Sprie Epithermal Deposit, Romania,” Econ. Geol. 97(2), 415–423 (2002).

    Article  Google Scholar 

  60. D. P. Mancano and A. R. Campbell, “Microthermometry of Enargite-Hosted Fluid Inclusions from the Lepanto, Philippines, High-Sulfidation Cu-Au Deposit,” Geochim. Cosmochim. Acta 59(19), 3909–3916 (1995).

    Article  Google Scholar 

  61. V. Lüders, B. Pracejus, and P. Halbach, “Fluid Inclusion and Sulfur Isotope Studies in Probable Modern Analogue Kuroko-Type Ores from the JADE Hydrothermal Field (Central Okinawa Trough, Japan),” Chem. Geol. 173(1–3), 45–58 (2001).

    Article  Google Scholar 

  62. V. B. Naumov and V. S. Kamenetsky, “Silicate and Salt Melts in the Genesis of the Industrial’noe Tin Deposit: Evidence from Inclusions in Minerals,” Geochem. Int. 44, 1181–1190 (2006).

    Article  Google Scholar 

  63. V. S. Kamenetsky, V. B. Naumov, P. Davidson, et al., “Immiscibility Between Silicate Magmas and Aqueous Fluids: a Melt Inclusion Pursuit Into the Magmatic-Hydrothermal Transition in the Omsukchan Granite (NE Russia),” Chem. Geol. 210, 73–90 (2004).

    Article  Google Scholar 

  64. I. V. Kulikov, “On Genesis of High-Temperature Calcite of the Tyrnyauz Deposit,” Izv. Vyssh. Ucheb. Zaved., Geol. Razved., No. 8, 118–121 (1981).

  65. S. G. Solov’ev, “Fluid Inclusions in Minerals of Metasomatites of the Kensui Skarn-Scheelite Deposit, Eastern Kyrgyzstan,” Izv. Vyssh. Uchebn. Zaved., Geol. Razved., No. 8, 37–1 (1991).

  66. F. G. Reif and E. D. Bazheev, “Magmatogenic Chloride Solutions and Tungsten Mineralization,” Geokhimiya, No. 1, 63–70 (1977).

  67. F. G. Reif and E. D. Bazheev, Magmatic Process and Tungsten Mineralization (Nauka, Novosibirsk, 1982) [in Russian].

    Google Scholar 

  68. V. B. Naumov, G. F. Ivanova, and V. V. Shapenko, “Genetic Aspects of the Rare-Metal Mineralization,” in Genetic Model of Endogenous Ore Formations (Nauka, Novosibirsk, 1983), Vol. 2, pp. 48–56 [in Russian].

    Google Scholar 

  69. V. B. Naumov and G. F. Ivanova, “Geochemical Criteria for Genetic Link of Rare-Metal Mineralization with Felsic Magmatism,” Geokhimiya, No. 6, 791–804 (1984).

  70. V. B. Naumov and G. F. Ivanova, “Genetic Relationship Between Rare-Metal Mineralization and Acid Magmatism As Revealed by the Study of Microinclusions and Indicator Microcomponents,” in Proceeding of the Sixth Quadrennial IAGOD Symposium (Germany, Stuttgart, 1984), pp. 395–401.

  71. G. F. Ivanova and V. V. Naumov, “Geochemical Inter-Relations of Rare-Metal Ore Mineralization with Granites,” in High Heat Production (HHR) Granites, Hydrothermal Circulation and Ore Genesis, (Inst. Mining Metallurg., London, 1985), pp. 155–162.

    Google Scholar 

  72. V. B. Naumov and V. I. Kovalenko, “Concentration and Pressure of Water in Felsic Magmas: Study of Mineral Inclusions,” Dokl. Akad. Nauk SSSR 261 (6), 1417–1420 (1981).

  73. J.-L. Zimmermann, “Les Fluids Dans Les Quartz Des Gisements Stanno-Cupriferes De Lanmeur-Kerprigent (Finistere),” Sciences de la Terre 19(1), 65–79 (1974).

    Google Scholar 

  74. A. Cheilletz, J. Dubessy, C. Kostolanyi, et al., “Les Fluids Moleculaires D’Un Filon De Quartz Hydrothermal: Comparaison De Techniques Analytiques Ponctuelles Et Globales, Contamination Des Fluides Occlus Oar Des Composes Carbones,” Bull. Mineral 107, 169–180 (1984).

    Google Scholar 

  75. G. Giuliani, “Les Concentrations Filoniennes a Tungstene-Etain Du Massif Granitique Des Zaer (Maroc Central): Mineralisations Et Phases Fluides Associees,” Miner. Deposita 19, 193–201 (1984).

    Article  Google Scholar 

  76. G. Giuliani, Y. D. Li, and T. F. Sheng, “Fluid Inclusion Study of Xihuashan Tungsten Deposit in the Southern Jiangxi Province, China,” Miner. Deposita 23, 24–33 (1988).

    Article  Google Scholar 

  77. G. F. Ivanova, E. V. Cherkasova, and V. B. Naumov, “Mineral Composition and Formation Conditions of the Piaotang Tin-Tungsten Deposit, South China,” Geol. Ore Dep. 38, 137–150 (1996).

    Google Scholar 

  78. B. I. Malyshev, O. F. Mironova, V. B. Naumov, et al., “Fluids of the Hemmerlein Skarn-Greisen Tin Deposit, Erzgebirge, Germany, Germaniya,” Geochem. Int. 35, 146–154 (1997).

    Google Scholar 

  79. B. I. Malyshev, O. F. Mironova, V. B. Naumov, et al., “Zinc Geochemistry at the Haemmerlein Skarn-Greisen Tin Deposit, Erzgebirge, Germany,” Geochem. Int. 37, 397–403 (1999).

    Google Scholar 

  80. T. M. Sushchevskaya, Ya. Dyurishova, A. M. Erokhin, et al., “Chemical Study of Mineral-Forming Media during Formation of the Cassiterite-Quartz Type Mineralization: Fluid Inclusion Data,” Geokhimiya, No. 6, 809–828 (1995).

  81. J. Dubessy, B. Poty, and C. Ramboz, “Advances in C-O-H-N-S Fluid Geochemistry Based on Micro-Raman Spectrometric Analysis of Fluid Inclusions,” Eur. J. Mineral 1, 517–534 (1989).

    Google Scholar 

  82. A. M. Kerkhof, J. L. R. Touret, C. Maijer, and J. B. H. Jansen, “Retrograde Methane-Dominated Fluid Inclusions from High-Temperature Granulites of Rogaland, Southwestern Norway,” Geochim. Cosmochim. Acta 55, 2533–2544 (1991).

    Article  Google Scholar 

  83. V. B. Naumov and V. V. Shapenko, “Methane in the Hydrothermal Solutions Forming Tin and Tungsten Deposits,” Geokhimiya, No. 9, 1335–1341 (1983).

  84. C. O’Reilly, V. Gallagher, and M. Feely, “Fluid Inclusion Study of the Ballinglen W-Sn-Sulphide Mineralization, SE Ireland,” Miner. Deposita 32, 569–580 (1997).

    Article  Google Scholar 

  85. R. M. K. Borges, R. N. N. Villas, K. Fuzikawa, et al., “Phase Separation, Fluid Mixing, and Origin of the Greisens and Potassic Episyenite Associated with the Agua Boa Pluton, Pitinga Tin Province, Amazonian Craton, Brazil,” J. South Am. Earth Sciences 27, 161–183 (2009).

    Article  Google Scholar 

  86. V. B. Naumov, V. I. Kovalenko, V. A. Dorofeeva, et al., “Average Compositions of Igneous Melts from Main Geodynamic Settings According to the Investigation of Melt Inclusions in Minerals and Quenched Glasses of Rocks,” Geochem. Int. 48, 1185–1207 (2010).

    Article  Google Scholar 

  87. V. I. Kovalenko, V. B. Naumov, A. V. Girnis, et al., “Estimation of the Average Contents of H2O, Cl, F, and S in the Depleted Mantle on the Basis of the Compositions of Melt Inclusions and Quenched Glasses of Mid-Ocean Ridge Basalts,” Geochem. Int. 44, 209–231 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Naumov.

Additional information

Original Russian Text © V.B. Naumov, V.A. Dorofeev, O.F. Mironova, 2011, published in Geokhimiya, 2011, Vol. 49, No. 10, pp. 1063–1082.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naumov, V.B., Dorofeev, V.A. & Mironova, O.F. Physicochemical parameters of the formation of hydrothermal deposits: A fluid inclusion study. I. Tin and tungsten deposits. Geochem. Int. 49, 1002–1021 (2011). https://doi.org/10.1134/S0016702911100041

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702911100041

Keywords

Navigation