Skip to main content
Log in

Oxygen fugacity in the apatite-bearing intrusion of the Khibina complex

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Based on the analysis of coexisting minerals (magnetite, ilmenite, titanite, and pyroxene), the temperature and redox conditions of rock crystallization in the Khibina alkaline massif were estimated. Under the redox conditions typical of the Khibina complex, the carbon speciation evolved as follows: CO2 in fluid and carbonate anions in melt at high temperatures; then, graphite formation; and, at lower temperatures, the appearance of significant amounts of hydrocarbons owing to fluid-graphite interaction. Abiogenic hydrocarbons in magmatic complexes can be produced by processes differing from the Fischer-Tropsch synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. F. Osborn, “Role of Oxygen Pressure in the Crystallization and Differentiation of Basaltic Magma,” Am. J. Sci. 257, 609–647 (1959).

    Google Scholar 

  2. D. C. Presnall, “The Join Forsterite-Diopside-Iron Oxide and Its Bearing on the Crystallization of Basaltic and Ultramafic Magmas,” Am. J. Sci. 264, 753–809 (1966).

    Google Scholar 

  3. D. Canil, “Vanadium Partitioning and the Oxidation State of Archean Komatiite Magmas,” Nature 389, 842–845 (1997).

    Article  Google Scholar 

  4. D. Canil, “Vanadium Partitioning between Orthopyroxene, Spinel and Silicate Melt and the Redox States of Mantle Source Regions for Primary Magmas,” Geochim. Cosmochim. Acta 63, 557–572 (1999).

    Article  Google Scholar 

  5. D. Canil, “Vanadium in Peridotites, Mantle Redox and Tectonic Environments: Archean to Present,” Earth Planet. Sci. Lett. 195, 75–90 (2002).

    Article  Google Scholar 

  6. D. H. Green, T. J. Fallon, and W. R. Taylor, “Mantle-Derived Magmas-Role of Variable Source Peridotite and Variable C-O-H Fluid Compositions,” in Magmatic Processes: Physicochemical Principles, Ed. by B. O. Mysen, Geochem. Soc. Spec. Publ. 1, 139–154 (1987).

  7. I. A. Petersilie, “Hydrocarbon Gases and Bitumen from the Intrusive Massifs of the Central Part of the Kola Peninsula,” Dokl. Akad. Nauk SSSR 122, 1086–1089 (1958).

    Google Scholar 

  8. I. A. Petersilie and H. Sørensen, “Hydrocarbon Gases and Bituminous Substances in Rocks from the Ilímaussaq Alkaline Intrusion, South Greenland,” Lithos 3, 59–76 (1970).

    Article  Google Scholar 

  9. S. V. Ikorsky and N. A. Shugurova, “New Data on the Composition of Gases in Minerals from the Alkaline Rocks of the Khibina Massif,” Geokhimiya, 953-947 (1974).

  10. L. N. Kogarko, Problems of the Genesis of Agpaitic Magmas (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  11. L. N. Kogarko, C. Kosztolanyi, and I. D. Ryabchikov, “Geochemistry of Reduced Fluid in Alkali Magmas,” Geochem. Int. 24, 20–27 (1987).

    Google Scholar 

  12. L. N. Kogarko, C. Kosztolanyi, and I. D. Ryabchikov, “Geochemistry of Reduced Fluid of Alkali Magmas,” Geokhimiya, 1688–1695 (1986).

  13. G. Markl, M. Marks, G. Schwinn, and H. Sommer, “Phase Equilibrium Constraints on Intensive Crystallization Parameters of the Ilímaussaq Complex, South Greenland,” J. Petrol. 42, 2231–2257 (2001).

    Article  Google Scholar 

  14. V. A. Nivin, “Gas Concentrations in Minerals with Reference to the Problem of the Genesis of Hydrocarbon Gases in Rocks of the Khibiny and Lovozero Massifs,” Geochem. Int. 40, 883–898 (2002).

    Google Scholar 

  15. V. A. Nivin, P. J. Treloar, N. G. Konopleva, and S. V. Ikorsky, “A Review of the Occurrence, Form and Origin of C-Bearing Species in the Khibiny Alkaline Igneous Complex, Kola Peninsula, NW Russia,” Lithos 85, 93–112 (2005).

    Article  Google Scholar 

  16. J. Potter, A. H. Rankin, and P. J. Treloar, “Abiogenic Fischer-Tropsch Synthesis of Hydrocarbons in Alkaline Igneous Rocks; Fluid Inclusion, Textural and Isotopic Evidence from the Lovozero Complex, N.W. Russia,” Lithos 75, 311–330 (2004).

    Article  Google Scholar 

  17. B. Beeskow, P. J. Treloar, A. H. Rankin, et al., “A Reassessment of Models for Hydrocarbon Generation in the Khibiny Nepheline Syenite Complex, Kola Peninsula, Russia,” Lithos 91, 1–18 (2006).

    Article  Google Scholar 

  18. L. N. Kogarko, Genetic Problems of Agpaitic Magmas (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  19. S. Salvi and A. Williams-Jones, “Alteration, HFSE Mineralisation, and Hydrocarbon Formation in Peralkaline Igneous Systems: Insights from the Strange Lake Pluton, Canada,” Lithos 91, (2006).

  20. I. A. Petersilie, “Hydrocarbon Gases and Bitumen in the Intrusive Massifs from the Central Part of the Kola Peninsula,” Dokl. Akad. Nauk SSSR 122, 1086–1089 (1958).

    Google Scholar 

  21. S. V. Ikorskii and N. A. Shugurova, “New Data on Gas Composition in Minerals from the Alkaline Rocks of the Khibiny Massif,” Geokhimiya, 943–947 (1974).

  22. A. F. Buddington and D. H. Lindsley, “Iron-Titanium Oxide Minerals and Synthetic Equivalents,” J. Petrol. 5, 310–357 (1964).

    Google Scholar 

  23. R. O. Sack and M. S. Ghiorso, “An Internally Consistent Model for the Thermodynamic Properties of Fe-Mg-Titanomagnetite-Aluminate Spinels,” Contrib. Mineral. Petrol. 106, 474–505 (1991).

    Article  Google Scholar 

  24. M. S. Ghiorso and R. O. Sack, “Fe-Ti Oxide Geothermometry: Thermodynamic Formulation and the Estimation of Intensive Parameters in Silicic Magmas,” Contrib. Mineral. Petrol. 108, 485–510 (1991).

    Article  Google Scholar 

  25. B. R. Frost and D. H. Lindsley, “Fe-Ti Oxide Geothermometry: Thermodynamic Formulation and the Estimation of Intensive Parameters in Silicic Magmas,” Contrib. Mineral. Petrol. 108, 485–510 (1991).

    Article  Google Scholar 

  26. B. R. Frost, D. H. Lindsley, and D. J. Andersen, “Fe-Ti Oxide-Silicate Equilibria: Assemblages with Fayalitic Olivine,” Am. Mineral. 73, 727–740 (1988).

    Google Scholar 

  27. D. R. Wones, “Significance of the Assemblage Titanite + Magnetite + Quartz in Granitic Rocks,” Am. Mineral. 74, 744–749 (1989).

    Google Scholar 

  28. D. Xirouchakis and D. H. Lindsley, “Equilibria among Titanite, Hedenbergite, Fayalite, Quartz, Ilmenite, and Magnetite: Experiments and Internally Consistent Thermodynamic Data for Titanite,” Am. Mineral. 83, 712–725 (1998).

    Google Scholar 

  29. D. Xirouchakis, D. H. Lindsley, and D. J. Andersen, “Assemblages with Titanite (CaTiOSiO4), Ca-Mg-Fe Olivine and Pyroxenes, Fe-Mg-Ti Oxides, and Quartz: Part I. Theory,” Am. Mineral. 86, 247–253 (2001).

    Google Scholar 

  30. D. Xirouchakis, D. H. Lindsley, and B. R. Frost, “Assemblages with Titanite (CaTiOSiO4), Ca-Mg-Fe Olivine and Pyroxenes, Fe-Mg-Ti Oxides, and Quartz: Part II. Application,” Am. Mineral. 86, 254–264 (2001).

    Google Scholar 

  31. I. D. Ryabchikov, A. V. Ukhanov, and T. Ishii, “Redox Equilibria in Upper Mantle Ultrabasites in the Yakutia Kimberlite Province,” Geochem. Int. 23, 38–50 (1986).

    Google Scholar 

  32. H. S. C. O’Neill and V. J. Wall, “The Olivine-Spinel Oxygen Geobarometer, the Nickel Precipitation Curve and the Oxygen Fugacity of the Upper Mantle,” J. Petrol. 28, 1169–1192 (1987).

    Google Scholar 

  33. C. Ballhaus, R. F. Berry, and D. H. Green, “Oxygen Fugacity Controls in the Earth’s Upper Mantle,” Nature 348, 437–440 (1990).

    Article  Google Scholar 

  34. C. Ballhaus, “Redox States of Lithospheric and Asthenospheric Upper Mantle,” Contrib. Mineral. Petrol. 114, 341–348 (1993).

    Article  Google Scholar 

  35. B. J. Wood, L. T. Bryndzya, and K. E. Johnson, “Mantle Oxidation State and Its Relationship to Tectonic Environment and Fluid Speciation,” Science 248, 337–345 (1990).

    Article  Google Scholar 

  36. I. D. Ryabchikov, A. V. Ukhanov, and T. Ishii, “Redox Equilibria in the Alkali Rocks from the Upper Mantle of the Yakutian Kimberlite Province,” Geokhimiya, 1110–1123 (1985).

  37. I. D. Ryabchikov and L. N. Kogarko, “Redox Equilibria in Alkaline Lavas from Trinidade Island, Brazil,” Int. Geol. Rev. 36, 173–183 (1994).

    Article  Google Scholar 

  38. I. D. Ryabchikov, I. P. Solovova, L. N. Kogarko, et al., “Thermodynamic Parameters of Generation of Meymechites and Alkaline Picrites in the Maymecha-Kotui Province: Evidence from Melt Inclusions,” Geokhimiya, No. 11, 1139–1150 (2002) [Geochem. Int. 40, 1031–1041 (2002)].

  39. A. V. Sobolev, V. S. Kamenetsky, and N. N. Kononkova, “New Data on the Petrology of Siberian Meymechites,” Geokhimiya, 1084–1095 (1991).

  40. R. Halama, T. Vennemann, W. Siebel, and G. Markl, “The Gronnedal-Ika Carbonatite-Syenite Complex, South Greenland: Carbonatite Formation by Liquid Immiscibility,” J. Petrol. 46, 191–217 (2005).

    Article  Google Scholar 

  41. U. Mann, M. Marks, and G. Markl, “Influence of Oxygen Fugacity on Mineral Compositions in Peralkaline Melts: The Katzenbuckel Volcano, Southwest Germany,” Lithos 91, 262–285 (2006).

    Article  Google Scholar 

  42. M. Marks and G. Markl, “Fractionation and Assimilation Processes in the Alkaline Augite Syenite Unit of the Ilímaussaq Intrusion, South Greenland, As Deduced from Phase Equilibria,” J. Petrol. 42, 1947–1969 (2001).

    Article  Google Scholar 

  43. M. A. W. Marks, J. Schilling, I. M. Coulson, et al., “The Alkaline-Peralkaline Tamazeght Complex, High Atlas Mountains, Morocco: Mineral Chemistry and Petrological Constraints for Derivation from a Compositionally Heterogeneous Mantle Source,” J. Petrol. 49, 1097–1131 (2008).

    Article  Google Scholar 

  44. E. E. Kostyleva-Labuntsova, B. E. Borutskii, M. N. Sokolova, Z. V. Shlyukova, M D. Dorfman, O. B. Dudkin, L. V. Kozyreva, and S. V. Ikorskii, Mineralogy of the Khibiny Massif. Minerals (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  45. B. E. Borutskii, Rock-Forming Minerals of High-Alkali Complexes (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  46. L. L. Perchuk, K. K. Podlesskii, and L. Y. Aranovich, Thermodynamics of Some Framework Silicates and Their Equilibria: Application to Geothermobarometry, in Progress in Metamorphic and Magmatic Petrology, Ed. by L. L. Perchuk (Cambridge University Press, Cambridge, 1991), pp. 131–164.

    Google Scholar 

  47. T. J. B. Holland and R. Powell, “An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest,” J. Metamorph. Geol. 16, 309–343 (1998).

    Article  Google Scholar 

  48. T. J. B. Holland, “Activities of Components in Omphacitic Solid Solutions. Application of Landau Theory to Mixtures,” Contrib. Mineral. Petrol. 105, 446–453 (1990).

    Article  Google Scholar 

  49. A. L. Perchuk and L. Y. Aranovich, “Thermodynamics of the Jadeite-Diopside-Hedenbergite Solid-Solution Model,” Geokhimiya, 539–547 (1991).

  50. V. L. Vinograd, “Thermodynamics of Mixing and Ordering in the Diopside-Jadeite System: I. A CVM Model,” Mineral. Mag. 66, 513–536 (2002).

    Article  Google Scholar 

  51. A. L. Perchuk and L. Ya. Aranovich, “Thermodynamic Model of the Jadeite-Diopside-Hedenbergite Solid Solution,” Geokhimiya, 539–547 (1991).

  52. M. S. Ghiorso and R. O. Sack, “Thermochemistry of the Oxide Minerals,” in Oxide Minerals: Petrologic and Magnetic Significance, Ed. by D. H. Lindsley, Rev. Mineral. 25, (Mineral. Soc. Am., Washington, 1991), pp. 221–264.

    Google Scholar 

  53. T. Holland and R. Powell, “A Compensated-Redlich-Kwong (CORK) Equation for Volumes and Fugacities of CO2 and H2O in the Range 1 Bar to 50 Kbar and 100–1600°C,” Contrib. Mineral. Petrol. 109, 265–273 (1991).

    Article  Google Scholar 

  54. K. I. Shmulovich, Carbon Dioxide in High-Temperature Mineral Formation (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  55. C. Zhang, Z. Duan, and Z. Zhang, “Molecular Dynamics Simulation of the CH4 and CH4-H2O Systems up to 10 GPa and 2573 K,” Geochim. Cosmochim. Acta 71, 2036–2055 (2007).

    Article  Google Scholar 

  56. I. D. Ryabchikov, Thermodynamic Analysis of Trace Element Behavior during the Crystallization of Silicate Melts (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. D. Ryabchikov.

Additional information

Original Russian Text © I.D. Ryabchikov, L.N. Kogarko, 2009, published in Geokhimiya, 2009, No. 12, pp. 1235–1248.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryabchikov, I.D., Kogarko, L.N. Oxygen fugacity in the apatite-bearing intrusion of the Khibina complex. Geochem. Int. 47, 1157–1169 (2009). https://doi.org/10.1134/S0016702909120015

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702909120015

Keywords

Navigation