Skip to main content
Log in

Carbonate-silicate equilibria in the high-magnesia ultrapotassic volcanics of the Toro-Ankole Province (Eastern African rift zone)

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

This work reports new data on phenocryst composition and carbonate-silicate equilibria in the volcanic rocks of kamafugitic affinity in the Toro-Ankole Province (East African rift zone). Inclusions of primary carbonates (calcite and dolomite) were found in olivines from ugandite and mafurite of the Bunyaruguru volcanic field. The initial compositions of melt inclusions in olivine from the ugandite were calculated from microprobe analyses and correspond to carbonatites. The find of barite and dolomite-barite inclusions in the olivine from the mafurite indicates that the melt contained sulfate sulfur, which is typical of oxidizing conditions. The calculation of the olivine-spinel equilibrium (T-\( f_{O_2 } \)) showed that crystallization of phenocrysts in mafurite occurred at oxygen fugacities above the NNO buffer (ΔQFM ∼ 2.5) in a wide temperature range (1230–750°C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.-L. Frezzotti, J. L. R. Touret, and E.-R. Neumann, “Ephemeral Carbonate Melts in the Upper Mantle: Carbonate- Silicate Immiscibility in Microveins and Inclusions within Spinel Peridotite Xenoliths, La Gomera, Canary Islands,” Eur. J. Mineral. 14, 891–904 (2002).

    Article  Google Scholar 

  2. L. N. Kogarko, C. M. B. Henderson, and H. Pacheco, “Primary Ca-rich Carbonatite Magma and Carbonate- Silicate-Sulphide Liquid Immiscibility in the Upper Mantle,” Contrib. Mineral. Petrol. 121, 267–274 (1995).

    Article  Google Scholar 

  3. L. N. Kogarko, G. Kurat, and T. Ntaflos, “Carbonate Metasomatism of the Oceanic Mantle beneath Fernando de Noronha Island, Brazil,” Contrib. Mineral. Petrol. 140, 577–587 (2001).

    Google Scholar 

  4. I. P. Solovova, A. V. Girnis, N. N. Kononkova, et al., “Melt Inclusion Evidence for Silicate-Carbonate Liquid Immiscibility in Olivine Melilitite of Mt. Vulture (South Italy),” in Proceedings of 4th Eurocarb. Workshop, Canary Islands, Spain, 2003 (2003), pp. 45–47.

  5. V. A. Zaitsev, L. N. Kogarko, and I. D. Ryabchikov, “Carbonate Globules in Cape Verde Volcanics—Evidence of Preceding Carbonate-Silicate Liquid Immiscibility,” in Proceedings of 4th Eurocarb. Workshop, Canary Islands, Spain, 2003 (2003), pp. 6–7.

  6. Yu. L. Kapustin and A. I. Polyakov, “Carbonatite Volcanoes of East Africa and Carbonatite Genesis,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 3, 30–43 (1985).

  7. K. Bailey, F. Lloyd, S. Kearns, et al., “Melilitite at Fort Portal, Uganda: Another Dimension to the Carbonate Volcanism,” Lithos 85, 15–25 (2005).

    Article  Google Scholar 

  8. F. E. Lloyd, “Experimental Melting and Crystallisation of Glassy Olivine Melilitites,” Contrib. Mineral. Petrol. 90, 236–243 (1985).

    Article  Google Scholar 

  9. F. Stoppa, A. R. Woolley, F. E. Lloyd, and N. Eby, “Carbonatite Lapilli-Bearing Tuff and a Dolomite Carbonatite Bomb from Murumuli Crater, Katwe Volcanic Field, Uganda,” Mineral. Mag. 64(4), 641–650 (2000).

    Article  Google Scholar 

  10. F. Stoppa and L. Lupini, “Mineralogy and Petrology of the Polino Monticellite Calcite Carbonatite (Central Italy),” Mineral. Petrol. 49, 213–231 (1993).

    Article  Google Scholar 

  11. A. Holmes, “A Suite of Volcanic Rocks from South-West Uganda Containing Kalsilite (a Polymorph of KAlSiO4),” Mineral. Mag. 01. XXVI(177), 197–217 (1942).

    Article  Google Scholar 

  12. V. V. Belousov, V. I. Gerasimovsky, A. V. Goryachev, et al., East African Rift System. Vol. 3. Geochemistry. Seismology. Main Results (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  13. F. E. Lloyd, “Upper-Mantle Metasomatism beneath a Continental Rift: Clinopyroxenes in Alkaline Mafic Lavas and Nodules from South-West Uganda,” Mineral. Mag. 44, 315–323 (1981).

    Article  Google Scholar 

  14. F. J. Kuerlmer, A. P. Visocky, and O. F. Tuttle, “Preliminary Survey of the System Barite-Calcite—Fluorite at 500 bar,” in Carbonatites, Ed. by O. F. Tuttle and J. Gittins (Inerscience, New York, 1966; Mir, Moscow, 1969)

    Google Scholar 

  15. I. M. Samson, A. E. Williams-Jones, and W. Liu, “The Chemistry of Hydrothermal Fluids in Carbonatites: Evidence from Leachate and SEM-Decrepitate Analysis of Fluid Inclusions from Oka, Quebec, Canada,” Geochim. Cosmochim. Acta 59(10), 1979–1989 (1995).

    Article  Google Scholar 

  16. D. S. Barker and P. H. Nixon, “High-Ca, Low-Alkali Carbonatite Volcanism at Fort Portal, Uganda,” Contrib. Mineral. Petrol. 103, 166–177 (1989).

    Article  Google Scholar 

  17. K. Török, E. Bali, C. Szabo, and J. A. Szakal, “Sr-Barite Droplets Associated with Sulfide Blebs in Clinopyroxene Megacrysts from Basaltic Tuff (Szentbekkalla, Western Hungary),” Lithos. 66, 275–289 (2003).

    Article  Google Scholar 

  18. O. V. Kobylkina, G. S. Ripp, and A. G. Doroshkevich, “Primary Inclusions in the Carbonatite and Comagmatic Silicate Rocks of the Khalyuta Manifestation (Western Transbaikalia),” in Proceedings of All-Russian Seminar with Participation of CIS, Moscow, Russia, 2002 (Moscow, 2002), p. 46 [in Russian].

  19. P. J. Jugo, R. W. Luth, and J. P. Richards, “An Experimental Study of the Sulfur Content in Basaltic Melts Saturated with Immiscible Sulfide Or Sulfate Liquids at 1300°C and 1.0 GPa,” J. Petrol. 46(4), 783–798 (2005).

    Article  Google Scholar 

  20. J. C. M. De Hoog, K. H. Hattori, and R. P. Hoblitt, “Oxidized Sulfur-Rich Mafic Magma at Mount Pinatubo, Philippines,” Contrib. Mineral. Petrol. 146, 750–761 (2004).

    Article  Google Scholar 

  21. P. J. Wyllie and A. P. Jones, “Experimental Data Bearing on the Origin of Carbonatites, with Particular Reference to the Mountain Pass Rare Earth Deposit,” in Applied Mineralogy, Ed. by W. C. Park, D. M. Hausen, and R. D. Hagni (American Institute of Mining, Metallurgical and Petroleum Engineers, New York, 1985), pp. 935–949.

    Google Scholar 

  22. G. P. Brey and D. H. Green, “The Role of CO2 in the Genesis of Olivine Melilitite,” Contrib. Mineral. Petrol. 49, 93–103 (1975).

    Article  Google Scholar 

  23. C. Ballhaus, R. F. Berry, and D. H. Green, “High Pressure Experimental Calibration of the Olivine-Orthopyroxene-Spinel Oxygen Geobarometer: Implications for the Oxidation State of the Upper Mantle,” Contrib. Mineral. Petrol. 107, 27–40 (1991).

    Article  Google Scholar 

  24. J.-C. C. Mercier, “Single-Pyroxene Thermobarometry,” Tectonophysics 79, 1–37 (1980).

    Article  Google Scholar 

  25. M. Coltorti, C. Bondiman, R. W. Hinton, et al., “Carbonatite Metasomatism of the Oceanic Upper Mantle: Evidence from Clinopyroxenes and Glasses in Ultramafic Xenoliths of Grande Comore, Indian Ocean,” J. Petrol. 40(1), 133–165 (1999).

    Article  Google Scholar 

  26. A. A. Gurenko and A. V. Sobolev, “Petrology and Geochemistry of East-African Kamafugites: Constraints from Inclusions in Minerals,” in Goldschmidt Conference Abstracts (2006), p. A220.

  27. A. A. Gurenko, A. V. Sobolev, and N. N. Kononkova, “New Data on the Petrology of Ugandites of the East African Rift using Results of Study of Magmatic Inclusions in Minerals,” Dokl. Akad. Nauk SSSR 305(6), 1458–1463 (1989).

    Google Scholar 

  28. W. J. Lee and P. J. Wyllie, “The System CaO-MgO-SiO2-CO2 at 1 GPa, Metasomatic Wehrlites and Primary Carbonatite Magmas,” Contrib. Mineral. Petrol. 138, 214–228 (2000).

    Article  Google Scholar 

  29. F. Stoppa and A. R. Woolley, “Italian Carbonatites: Field Occurrence, Petrology and Regional Significance,” Mineral. Petrol. 59, 43–67 (1997).

    Article  Google Scholar 

  30. K. R. Moore and B. J. Wood, “The Transition from Carbonate to Silicate Melts in the CaO-MgO-SiO2-CO2 System,” J. Petrol. 39(11), 1943–1951 (1998).

    Article  Google Scholar 

  31. J. A. Dalton and B. J. Wood, “The Partitioning of Fe and Mg between Olivine and Carbonate and the Stability of Carbonate under Mantle Conditions,” Contrib. Mineral. Petrol. 114, 501–509 (1993).

    Article  Google Scholar 

  32. W. Lee and P. J. Wyllie, “Liquid Immiscibility between Nephelinite and Carbonatite from 1.0 to 2.5 GPa Compared with Mantle Melt Compositions,” Contrib. Mineral. Petrol. 127, 1–16 (1997).

    Article  Google Scholar 

  33. M. E. Wallace and D. H. Green, “An Experimental Determination of Primary Carbonatite Magma Composition,” Nature 335, 343–346 (1988).

    Article  Google Scholar 

  34. L. N. Kogarko, “Role of CO2 on Differentiation of Ultramafic Alkaline Series: Liquid Immiscibility in Carbonate-Bearing Phonolitic Dykes (Polar Siberia),” Mineral. Mag. 61, 549–556 (1997).

    Article  Google Scholar 

  35. A. E. Moore and A. J. Erlank, “Unusual Olivine Zoning—Evidence for Complex Physico-Chemical Changes during the Evolution of Olivine Melilitite and Kimberlite Magmas,” Contrib. Mineral. Petrol. 70, 391–405 (1979).

    Article  Google Scholar 

  36. S. J. Barnes and P. L. Roeder, “The Range of Spinel Compositions in Terrestrial Mafic and Ultramafic Rocks,” J. Petrol. 42(12), 2279–2302 (2001).

    Article  Google Scholar 

  37. B. O. Mysen, R. J. Arculus, and D. H. Eggler, “Solubility of Carbon Dioxide in Melts of Andesitic, Tholeiite and Olivine Nephelinite Compositions to 30 Kbar Pressure,” Contrib. Mineral. Petrol 53, 227–239 (1975).

    Article  Google Scholar 

  38. F. E. Lloyd, “Characterization of Mantle Metasomatic Fluids in Spinel Lherzolites and Alkali Clinopyroxenites from the West Eifel and Southwest Uganda,” in Mantle Metasomatism, Ed. by M. Menzies and C. J. Hawkesworth (Academic Press, London, 1987), pp. 91–124.

    Google Scholar 

  39. D. K. Bailey, “Continental Rifting and Mantle Degassing,” in Petrology and Geochemistry of Continental Rifts, Ed. by E. R. Neumann and I. B. Ramberg (Riedel, Dordrecht, 1978), pp. 1–13

    Google Scholar 

  40. D. K. Bailey, “Volcanism, Earth Degassing and Replenished Lithosphere Mantle,” Phil. Trans. R. Soc. London, A297, 309–322 (1980).

    Google Scholar 

  41. S. F. Foley, W. R. Taylor, and D. H. Green, “The Role of Fluorine and Oxygen Fugacity in the Genesis of the Ultrapotassic Rocks,” Contrib. Mineral. Petrol. 94, 183–192 (1986).

    Article  Google Scholar 

  42. I. D. Ryabchikov, “Carbon Compounds under Upper Mantle Conditions,” Geokhimiya, No. 11, 1539–1546 (1988).

  43. D. Vukadinovic and A. D. Edgar, “Phase Relations in the Phlogopite-Apatite System at 20 kbar; Implications for the Role of Fluorine in Mantle Melting,” Contrib. Mineral. Petrol. 114, 247–254 (1993).

    Article  Google Scholar 

  44. H. Keppler, “Water Solubility in Carbonatite Melts,” Am. Mineral. 88, 1822–1824 (2003).

    Google Scholar 

  45. L. N. Kogarko, “Role of Deep-Seated Fluids in the Genesis of Mantle Heterogeneities and Alkaline Magmatism,” Geol. Geofiz. 46(12), 1234–1245 (2005).

    Google Scholar 

  46. Y. Thibault, A. D. Edgar, and F. E. Lloyd, “Experimental Investigation of Melts from a Carbonated Phlogopite Lherzolite: Implications for Metasomatism in the Continental Lithospheric Mantle,” Am. Mineral. 77, 784–794 (1992).

    Google Scholar 

  47. J. Blundy and J. Dalton, “Experimental Comparison of Trace Element Partitioning between Clinopyroxene and Melt in Carbonate and Silicate Systems, and Implications for Mantle Metasomatism,” Contrib. Mineral. Petrol. 139, 356–371 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Murav’eva.

Additional information

Original Russian Text © N.S. Murav’eva, V.G. Senin, 2009, published in Geokhimiya, 2009, No. 9, pp. 937–957.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murav’eva, N.S., Senin, V.G. Carbonate-silicate equilibria in the high-magnesia ultrapotassic volcanics of the Toro-Ankole Province (Eastern African rift zone). Geochem. Int. 47, 882–900 (2009). https://doi.org/10.1134/S0016702909090031

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702909090031

Keywords

Navigation