Skip to main content
Log in

Flow Characteristics of a Supersonic Open Cavity

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

An open cavity flow exhibits intense self-sustained oscillations. This transient behavior stimulates violent pressure fluctuations because of multiple-order cavity tones. Detached eddy simulation was conducted to simulate the cavity flow at the freestream Mach number of 1.19. In order to improve the understanding of the shear layer convection processes and frequency characteristics the velocity of the flow field at cavity mid-span was studied using the dynamic mode decomposition (DMD) algorithm. The first three modes of the supersonic cavity flow were extracted to describe the flow configuration at the dominant frequencies. The two-vortices, three-vortices, and four-vortices are the corresponding first three DMD modes. The simplified mode structures are proposed to explain the flow dynamics in a supersonic cavity. When a feedback compression wave encounters the extrusion wave at a special location, an “analogous sonic boom” phenomenon appears causing violent noise in the cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. W. Rowley and D. R. Williams, “Dynamics and control of high-Reynolds-number flow over open cavities,” Annu. Rev. Fluid Mech. 38(1), 251–276 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. J. E. Rossiter, “Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds,” RAE Techn. Rep. no. 3438 (1964).

    Google Scholar 

  3. C. K. W. Tam and P. W. Block, “On the tones and pressure oscillations induced by flow over rectangular cavities,” J. Fluid Mech. 89(2), 373–399 (1978).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. N. Zhuang, F. S. Alvi, M. B. Alkislar, and C. Shih, “Supersonic cavity flows and theircControl,” AIAA J. 44(9), 2118–2128 (2006).

    Article  ADS  Google Scholar 

  5. S. J. Moon, S. L. Gai, H. H. Kleine, and A. J. Neely, “Supersonic flow over straight shallow cavities including leading and trailing modifications,” AIAA-2010-4687 (2010).

    Google Scholar 

  6. R. F. Schmit, L. T. F. Semmelmayer, and L. T. M. Haverkamp, “Fourier analysis of high speed shadowgraph images around a Mach 1.5 cavity flow field,” AIAA-2011-3961 (2011).

    Google Scholar 

  7. H. Wang, P. Li, M. Sun, and J. Wei, “Entrainment characteristics of cavity shear layers in supersonic flows,” Acta Astronautica 137, 214–221 (2017).

    Article  ADS  Google Scholar 

  8. D. G. Yang, J. Q. Li, and Z. L. Fan, “Aerodynamic characteristics of transonic and supersonic flow over rectangular cavities,” Flow, Turbulence, and Combustion 84(4), 639–652 (2006).

    Article  MATH  Google Scholar 

  9. R. F. Schmit, J. E. Grove, and A. Ahmed, “Examining passive flow control using high speed shadowgraph images in a Mach 1.5 cavity flow field,” Intern. J. Flow Control 5(3), 153–186 (2013).

    Article  Google Scholar 

  10. T. Colonius, “An overview of simulation, modeling, and active control of flow/acoustic resonance in open cavities,” AIAA-2001-0076 (2001).

    Google Scholar 

  11. C. W. Rowley, T. Colonius, and R. M. Murray, “Dynamical models for control of cavity oscillations,” AIAA-2001-2126 (2001).

    Google Scholar 

  12. P. J. Schmid, “Dynamic mode decomposition of numerical and experimental data,” J. Fluid Mech. 56, 5–28 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. G. H. Gunaratne, D. G. Talley, J. R. Gord, and S. Roy, “Dynamic mode decomposition based analysis of shear coaxial jets with and without transverse acoustic driving,” J. Fluid Mech. 790, 5–32 (2016).

    Article  ADS  Google Scholar 

  14. T. Sayadi, P. J. Schmid, F. Richecoeur, and D. Durox, “Parametrized data-driven decomposition for bifurcation analysis, with application to thermo-acoustically unstable systems,” Phys. Fluids 27(3), 037102-1013 (2015).

    Google Scholar 

  15. C. Pan, D. Yu, and J. Wang, “Dynamical mode decomposition of gurney flap wake flow,” Theor. Appl. Mech. Letters 1(1), 42–46 (2011).

    Article  Google Scholar 

  16. A. Seena and H. J. Sung, “Dynamic mode decomposition of turbulent cavity flows for self-sustained oscillations,” Intern. J. Heat Fluid Flow 32, 1098–1110 (2011).

    Article  Google Scholar 

  17. A. Wynn, D. S. Pearson, B. Ganapathisubramani, and P. J. Goulart, “Optimal mode decomposition for unsteady flows,” J. Fluid Mech. 733(10), 473–503 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. M. Jovanovic and P. Schmid, “Sparsity-promoting dynamic mode decomposition,” Phys. Fluids 26(2), 561–571 (2013).

    Google Scholar 

  19. M. S. Hemati, C. W. Rowley, E. A. Deem, and L. N. Cattafesta, “De-biasing the dynamic mode decomposition for applied Koopman spectral analysis,” J. Nonlinear Sci. 25(6), 1–40 (2015).

    ADS  MathSciNet  Google Scholar 

  20. M. S. Gritskevich, A. V. Garbaruk, J. Schutze, and F. R. Menter, “Development of DDES and IDDES formulations for the k–ω shear stress transport model,” Flow, Turbulence and Combustion 88(3), 431–449 (2012).

    Article  MATH  Google Scholar 

  21. A. Hamed, D. Basu, and K. Das, “Detached eddy simulations of supersonic flow over cavity,” AIAA-2003-549 (2010).

    Google Scholar 

  22. R. G. Abdrashitov, E. Y. Arkhireeva, B. N. Dan’Kov, V. S. Korotaev, A. P. Kosenko, O. Yu. Popov, O. K. Strel’tsov, and I. B. Chuchkalov, “Numerical and experimental investigation of the means for reducing the aeroacoustic loads in an extended rectangular cavity at subsonic and transonic freestream velocities,” Fluid Dynamic 52(2), 239–252 (2017).

    Article  MATH  Google Scholar 

  23. B. H. K. Lee, “Pressure waves generated at the downstream corner of a rectangular cavity.” J. Aircraft 47(3), 1064–1066 (2010).

    Article  Google Scholar 

  24. J. C. R. Hunt, A. A. Wray, and P. Moin, “Eddies stream and convergence zones in turbulent flows,” Center for Turbulence Research, CTR-S88, 193–209 (1988).

    Google Scholar 

  25. B. N. Dan’kov, A. P. Duben’, and T. K. Kozubskaya, “Numerical modeling of the self-oscillation onset near a three-dimensional backward-facing step in a transonic flow,” Fluid Dynamics 51(4), 534–543 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  26. H. Heller and J. Delfs, “Cavity pressure oscillations: the generating mechanism visualized,” J. Sound Vibr. 45, 248–252 (1996).

    Article  ADS  Google Scholar 

  27. C. W. Rowley, I. Mezić, and S. Bagheri, “Spectral analysis of nonlinear flows,” J. Fluid Mech. 641, 115–127 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. T. Gautam, G. Lovejeet, and A. Vaidyanathan, “Experimental study of supersonic flow over cavity with aft wall offset and cavity floor injection,” Aerospace Science & Technology 70, 211–232 (2017).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Top-ranking Discipline (no. 15021540) Program of Chinese Liaoning province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. M. Wang or J. Q. Wu.

Additional information

Declaration of Conflicting Interests

The Authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Russian Text © The Author(s), 2019, published in Izvestiya RAN. Mekhanika Zhidkosti i Gaza, 2019, No. 5, pp. 135–149.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J.M., Ming, X.J., Wang, H. et al. Flow Characteristics of a Supersonic Open Cavity. Fluid Dyn 54, 724–738 (2019). https://doi.org/10.1134/S0015462819050124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462819050124

Keywords

Navigation