Skip to main content
Log in

Numerical modeling of coherent structures attendant on impurity propagation in the atmospheric boundary layer over a forest canopy

  • Supplement: Vychislitel’naya Mekhanika Sploshnykh Sred (Computational Continuum Mechanics)
  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

Three-dimensional large eddy simulation is used to solve the problem for a homogeneous forest canopy. The development of the Kelvin-Helmholtz instability above the canopy leads to the formation of coherent structures in the atmosphere flow, which are reproduced in the calculations. The statistical characteristics of the flow obtained from the numerical modeling are compared with experimental data. The passive admixture transfer from the canopy to the clean atmosphere is studied for two cases, namely, for constant and variable coupled concentration of the impurity in the canopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Kaimal and J.J. Finnigan, Atmospheric Boundary Layer Flows, Oxford Univ. Press, Oxford (1994).

    Google Scholar 

  2. A.S. Dubov, L.P. Bykova, and S.V. Marunich, Turbulence in Plant Canopies [in Russian], Gidrometeoizdat, Leningrad (1978).

    Google Scholar 

  3. J.J. Finnigan, “Turbulence in Plant Canopies,” Annu. Rev. Fluid Mech. 32, 519 (2000).

    Article  ADS  Google Scholar 

  4. R.H. Shaw and U. Schumann, “Large-Eddy Simulation of Turbulent Flow above and within a Forest,” Boundary-Layer Meteorology 61, 47 (1992).

    Article  ADS  Google Scholar 

  5. M. Kanda and M. Hino, “Organized Structures in Developing Turbulent Flow within and above a Plant Canopy Using a Large-Eddy Simulation,” Boundary-Layer Meteorology 68, 237 (1994).

    Article  ADS  Google Scholar 

  6. H.-B. Su, R.H. Shaw, U.K.T. Paw, C.-H. Moeng, and P.P. Sullivan, “Turbulent Statistics of Neutrally Stratified Flow within and above a Sparse Forest from Large-Eddy Simulation and Field Observations,” Boundary-Layer Meteorology 88, 363 (1998).

    Article  ADS  Google Scholar 

  7. R.H. Shaw, G. Den Hartog, and H.H. Neumann, “Influence of Foliar Density and Thermal Stability on Profiles of Reynolds Stress and Turbulence Intensity in a Deciduous Forest,” Boundary-Layer Meteorology 45, 391 (1988).

    Article  ADS  Google Scholar 

  8. T. Watanabe, “Large-Eddy Simulation of Coherent Turbulence Structures Associated with Scalar Ramps over Plant Canopies,” Boundary-Layer Meteorology 112, 307 (2004).

    Article  ADS  Google Scholar 

  9. S. Dupont, Y. Brunet, and N. Jarosz, “Eulerian Modelling of Pollen Dispersal over Heterogeneous Vegetation Canopies,” Agricultural Forest Meteorology 141, 82 (2006).

    Article  Google Scholar 

  10. M. Huang, J.D. Cassiani, and J.D. Albertson, “Analysis of Coherent Structures within the Atmospheric Boundary Layer,” Boundary-Layer Meteorology 131, 147 (2009).

    Article  ADS  Google Scholar 

  11. J.J. Finnigan and R.H. Shaw, “A Wind-Tunnel Study of Airflow in Waving Wheat: an EOF Analysis of the Structure of the Large-Eddy Motion,” Boundary-Layer Meteorology 96, 211 (2000).

    Article  ADS  Google Scholar 

  12. M.R. Raupach, J.J. Finnigan, and Y. Brunet, “Coherent Eddies and Turbulence in Vegetation Canopies: the Mixing-Layer Analogy,” Boundary-Layer Meteorology 78, 351 (1996).

    Article  ADS  Google Scholar 

  13. G. Accary, O. Bessonov, D. Fougère, S. Meradji, and S. Morvan, “Optimized Parallel Approach for 3D Modelling of Forest Fire Behaviour,” Lect. Notes Computer Sci. 4671, 96 (2007).

    Article  Google Scholar 

  14. H.K. Versteeg and W. Malasekera, An Introduction to Computational Fluid Dynamics, Longman Scientific & Technical, Harlow, UK (1995).

    Google Scholar 

  15. J. Hunt, A. Wray, and P. Mion, “Eddies, Streams and Convergence Zones in Turbulent Flows,” Center of Turbulence Research Rep. CTR-S88 (1988), p. 193.

  16. A. Michalke, “On the Inviscid Instability of the Hyperbolic-Tangent Velocity Profile,” J. Fluid Mech. 19, 543 (1964).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. P. Comte, M. Lesieur, and E. Lamballais, “Large and Small-Scale Stirring of Vorticity and a Passive Scalar in a 3-D Temporal Mixing Layer,” Phys. Fluids A 4, 2761 (1992).

    Article  ADS  Google Scholar 

  18. B.J. Marshall, C.J. Wood, B.A. Gardiner, R.E. Belcher, “Conditional Sampling of Canopy Gusts,” Boundary-Layer Meteorology 102, 225 (2002).

    Article  ADS  Google Scholar 

  19. R.J. Adrian, “Hairpin Vortex Organization in Wall Turbulence,” Phys. Fluids 19, 041301–1 (2007).

    Article  ADS  Google Scholar 

Download references

Authors

Additional information

Original Russian Text © K.A. Gavrilov, D. Morvan, G. Accary, D.V. Lyubimov, S. Meradji, O.A. Bessonov, 2010, published in Vychislitel’naya Mekhanika Sploshnykh Sred, 2010, Vol. 3, No. 2, pp. 34–45.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavrilov, K.A., Morvan, D., Accary, G. et al. Numerical modeling of coherent structures attendant on impurity propagation in the atmospheric boundary layer over a forest canopy. Fluid Dyn 46, 138–147 (2011). https://doi.org/10.1134/S0015462811010169

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462811010169

Keywords

Navigation