Skip to main content
Log in

Controlling the Behavior of Harmful Insects: Light and Chemical Signals and Their Combined Action

  • Published:
Entomological Review Aims and scope Submit manuscript

Abstract

Since environmental safety is the most important requirement for modern plant protection, a promising direction of its development is the search for ways to control pest behavior using non-toxic electromagnetic radiation (light) and natural chemical compounds (semiochemicals). This review covers a wide range of theoretical and practical aspects of controlling insect behavior with light and chemical cues, separately or in combination. The modern ideas about the structural and functional organization of the visual and olfactory receptor systems in insects, the specific features of their visual and olfactory perception, and the multimodal mechanisms of sensory information processing that underlie complex forms of behavior are discussed. The history of using artificial light sources in plant protection and the experience of using pheromone-based products to suppress pest reproduction (mass catching, disorientation, indirect methods of population control) are briefly described. Special attention is paid to the advantages and drawbacks of light emitters and biologically active compounds (synthetic sex attractants and plant-derived kairomones) in monitoring and extermination of insect pests, and their safety for non-target insect species is evaluated using specific examples. Since the combined use of light and semiochemicals often shows a synergistic effect in attracting the target species, it is very important to develop trap designs combining visual and olfactory stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Abudulai, M., Nboyine, J.A., Quandahor, P., Seidu, A., and Traore, F., Agricultural intensification causes decline in insect biodiversity, in Global Decline of Insects, El-Shafie, H., Ed., London: IntechOpen, 2022. https://doi.org/10.5772/intechopen.101360

  2. Ahuja, D.B., Ahuja, U.R., Srinivas, P., Singh, R.V., Malik, M., Sharma, P., and Bamawale, O.M., Development of farmer-led integrated management of major pests of cauliflower cultivated in rainy season in India, J. Agric. Sci., 2012, vol. 4, no. 2, p. 79. https://doi.org/10.5539/jas.v4n2p79

    Article  Google Scholar 

  3. Akutse, K.S., Subramanian, S., Khamis, F.M., Ekesi, S., and Mohamed, S.A., Entomopathogenic fungus isolates for adult Tuta absoluta (Lepidoptera: Gelechiidae) management and their compatibility with Tuta pheromone, J. Appl. Entomol., 2020, vol. 144, no. 9, p. 777. https://doi.org/10.1111/jen.12812

  4. Albert, R., Bogenschütz, H., and König, E., Untersuchungen zum Einsatz von Sexuallockstoff‐Fallen zur überwachung des Massenwechsels von Operophthera brumata L. (Lepid., Geometridae), Z. Angew. Entomol., 1984, vol. 98, no. 1, p. 286. https://doi.org/10.1111/j.1439-0418.1984.tb02714.x

  5. Allen, D.C., Abrahamson, L.P., Eggen, D.A., Lanier, G.N., Swier, S.R., Kelley, R.S., and Auger, M., Monitoring spruce budworm (Lepidoptera: Tortricidae) populations with pheromone-baited traps, Environ. Entomol., 1986, vol. 15, no. 1, p. 152. https://doi.org/10.1093/ee/15.1.152

    Article  Google Scholar 

  6. Allison, J.D. and Cardé, R.T., Pheromones: reproductive isolation and evolution in moths, in Pheromone Communication in Moths, Allison, J.D. and Cardé, R.T., Eds., Berkeley: University of California Press, 2016, p. 11.

  7. Altieri, M. and Nicholls, C., Biodiversity and Pest Management in Agroecosystems, New York etc.: CRC Press, 2004. https://doi.org/10.1201/9781482277937

  8. Alyokhin, A.V., Messing, R.H., and Duan, J.J., Visual and olfactory stimuli and fruit maturity affect trap captures of oriental fruit flies (Diptera: Tephritidae), J. Econ. Entomol., 2000, vol. 93, no. 3, p. 644. https://doi.org/10.1603/0022-0493-93.3.644

    Article  CAS  Google Scholar 

  9. Ando, T., Inomata, S., and Yamamoto, M., Lepidopteran sex pheromones, in The Chemistry of Pheromones and Other Semiochemicals, Schulz, S., Ed. (Topics in Current Chemistry. Vol. 239), Berlin; Heidelberg: Springer, 2004, p. 51.

  10. Andreev, S.V., Martens, B.K., and Molchanova, V.A., Electric traps in research on plant protection from pests, Entomol. Obozr., 1970, vol. 49, no. 2, 484.

  11. Arnold, S.E., Stevenson, P.C., and Belmain, S.R., Shades of yellow: interactive effects of visual and odour cues in a pest beetle, PeerJ, 2016, vol. 4, art. e2219. https://doi.org/10.7717/peerj.2219

  12. Avarguès-Weber, A., Mota, T., and Giurfa, M., New vistas on honey bee vision, Apidologie, 2012, vol. 43, p. 244. https://doi.org/10.1007/s13592-012-0124-2

    Article  CAS  Google Scholar 

  13. Baker, G., Tann, C., and Fitt, G., A tale of two trapping methods: Helicoverpa spp. (Lepidoptera, Noctuidae) in pheromone and light traps in Australian cotton production systems, Bull. Entomol. Res., 2011, vol. 101, no. 1, p. 9. https://doi.org/10.1017/S0007485310000106

  14. Baker, P.B., Shelton, A.M., and Andaloro, J.T., Monitoring of diamondback moth (Lepidoptera: Yponomeutidae) in cabbage with pheromones, J. Econ. Entomol., 1982, vol. 75, no. 6, p. 1025. https://doi.org/10.1093/jee/75.6.1025

    Article  Google Scholar 

  15. Baker, R. and Sadovy, Y., The distance and nature of the light-trap response of moths, Nature, 1978, vol. 276, no. 5690, p. 818. https://doi.org/10.1038/276818a0

    Article  Google Scholar 

  16. Balamurali, G.S., Rose, S., Somanathan, H., and Kodandaramaiah, U., Complex multi-modal sensory integration and context specificity in colour preferences of a pierid butterfly, J. Exp. Biol., 2020, vol. 223, no. 13, art. jeb223271. https://doi.org/10.1242/jeb.223271

  17. Balkenius, A., Bisch-Knaden, S., and Hansson, B., Interaction of visual and odour cues in the mushroom body of the hawkmoth Manduca sexta, J. Exp. Biol., 2009, vol. 212, no. 4, p. 535. https://doi.org/10.1242/jeb.021220

  18. Balmori, A., Electromagnetic radiation as an emerging driver factor for the decline of insects, Sci. Total Environ., 2021, vol. 767, art. 144913. https://doi.org/10.1016/j.scitotenv.2020.144913

  19. Barbier, M., Vvedenie v khimicheskuyu ekologiyu (Introduction to Chemical Ecology), Moscow: Mir, 1978.

  20. Barghini, A. and Souza de Medeiros, B.A., UV radiation as an attractor for insects, Leukos, 2012, vol. 9, no. 1, p. 47. https://doi.org/10.1582/LEUKOS.2012.09.01.003

    Article  Google Scholar 

  21. Barragán‐Fonseca, K.Y., Van Loon, J.J., Dicke, M., and Lucas‐ Barbosa, D., Use of visual and olfactory cues of flowers of two brassicaceous species by insect pollinators, Ecol. Entomol., 2020, vol. 45, no. 1, p. 45. https://doi.org/10.1111/een.12775

    Article  Google Scholar 

  22. Bartels, D.W., Hutchison, W.D., and Udayagiri, S., Pheromone trap monitoring of Z-strain European corn borer (Lepidoptera: Pyralidae): optimum pheromone blend, comparison with blacklight traps, and trap number requirements, J. Econ. Entomol., 1997, vol. 90, no. 2, p. 449. https://doi.org/10.1093/jee/90.2.449

    Article  Google Scholar 

  23. Bartels, D.W., Hutchison, W.D., Bach, D.J., and Rabaey, T.L., Evaluation of commercial pheromone lures and comparative blacklight trap catches for monitoring Z-strain European corn borer (Lepidoptera: Crambidae), J. Agric. Urban Entomol., 1999, vol. 16, no. 1, p. 85.

    Google Scholar 

  24. Bebber, D.P., Ramotowski, M.A., and Gurr, S.J., Crop pests and pathogens move polewards in a warming world, Nat. Clim. Change, 2013, vol. 3, no. 11, p. 985. https://doi.org/10.1038/nclimate1990

    Article  Google Scholar 

  25. Beck, J. and Linsenmair, K.E., Feasibility of light-trapping in community research on moths: attraction radius of light, completeness of samples, nightly flight times and seasonality of Southeast-Asian hawkmoths (Lepidoptera: Sphingidae), J. Res. Lepid., 2006, vol. 39, p. 18.

    Article  Google Scholar 

  26. Belušič, G., Šporar, K., and Meglič, A., Extreme polarisation sensitivity in the retina of the corn borer moth Ostrinia, J. Exp. Biol., 2017, vol. 220, no. 11, p. 2047. https://doi.org/10.1242/jeb.153718

  27. Benelli, G., Lucchi, A., Thomson, D., and Ioriatti, C., Sex pheromone aerosol devices for mating disruption: challenges for a brighter future, Insects, 2019, vol. 10, no. 10, p. 308. https://doi.org/10.3390/insects10100308

    Article  Google Scholar 

  28. Bento, J.M., Parra, J.R., de Miranda, S.H., Adami, A.C., Vilela, E.F., and Leal, W.S., How much is a pheromone worth? F1000Research, 2016, vol. 5, art. 1763. https://doi.org/10.12688/f1000research.9195.1

  29. Bereś, P., Flight dynamics of Ostrinia nubilalis Hbn. (Lep., Crambidae) based on the light and pheromone trap catches in Nienadówka (South-Eastern Poland) in 2006–2008, J. Plant Prot. Res., 2012, vol. 52, no. 1, p. 130. https://doi.org/10.2478/v10045-012-0021-8

  30. Bishop, A.L., Worrall, R.J., Spohr, L.J., Mckenzie, H.J., and Barchia, I.M., Response of Culicoides spp. (Diptera: Ceratopogonidae) to light-emitting diodes, Aust. J. Entomol., 2004, vol. 43, no. 2, p. 184. https://doi.org/10.1111/j.1440-6055.2003.00391.x

  31. Björklund, N., Nordlander, G., and Bylund, H., Olfactory and visual stimuli used in orientation to conifer seedlings by the pine weevil, Hylobius abietis, Physiol. Entomol., 2005, vol. 30, no. 3, p. 225. https://doi.org/10.1111/j.1365-3032.2005.00451.x

  32. Blackmer, J.L. and Cañas, L.A., Visual cues enhance the response of Lygus hesperus (Heteroptera: Miridae) to volatiles from host plants, Environ. Entomol., 2005, vol. 34, no. 6, p. 1524. https://doi.org/10.1603/0046-225X-34.6.1524

  33. Blassioli-Moraes, M.C., Laumann, R.A., Michereff, M.F., and Borges, M., Semiochemicals for integrated pest management, in Sustainable Agrochemistry, Vaz, S., Ed., Cham: Springer, 2019, p. 85. https://doi.org/10.1007/978-3-030-17891-8_3

  34. Blomberg, O., Itämies, J., and Kuusela, K., Insect catches in a blended and a black light-trap in northern Finland, Oikos, 1976, vol. 27, no. 1, p. 57. https://doi.org/10.2307/3543432

    Article  Google Scholar 

  35. Boeckh, J., Kaissling, K.E., and Schneider, D., Insect olfactory receptors, Cold Spring Harbor Symp. Quant. Biol., 1965, vol. 30, p. 263.

    Article  CAS  Google Scholar 

  36. Bourdouxhe, L., Study of changes in Heliothis armigera flights with synthetic pheromone traps in Senegal, FAO Plant Prot. Bull., 1980, vol. 28, no. 3, p. 107.

  37. Bowden, J., An analysis of factors affecting catches of insects in light-traps, Bull. Entomol. Res., 1982, vol. 72, no. 4, p. 535. https://doi.org/10.1017/S0007485300008579

    Article  Google Scholar 

  38. Boyes, D.H., Evans, D.M., Fox, R., Parsons, M.S., and Pocock, M.J., Is light pollution driving moth population declines? A review of causal mechanisms across the life cycle, Insect Conserv. Diversity, 2021, vol. 14, no. 2, p. 167. https://doi.org/10.1111/icad.12447

    Article  Google Scholar 

  39. Brévault, T. and Quilici, S., Interaction between visual and olfactory cues during host finding in the tomato fruit fly Neoceratitis cyanescens, J. Chem. Ecol., 2010, vol. 36, no. 3, p. 249. https://doi.org/10.1007/s10886-010-9766-6

  40. Brezolin, A.N., Martinazzo, J., Muenchen, D.K., de Cezaro, A., Rigo, A.A., Steffens, C., Steffens, J., Blassioli-Moraes, M.C., and Borges, M., Tools for detecting insect semiochemicals: a review, Anal. Bioanal. Chem., 2018, vol. 410, no. 17, p. 4091. https://doi.org/10.1007/s00216-018-1118-3

    Article  CAS  Google Scholar 

  41. Briscoe, A.D. and Chittka, L., The evolution of color vision in insects, Annu. Rev. Entomol., 2001, vol. 46, p. 471. https://doi.org/10.1146/annurev.ento.46.1.471

    Article  CAS  Google Scholar 

  42. Brooks, D.R., Bater, J.E., Clark, S.J., Monteith, D.T., Andrews, C., Corbett, S.J., Beaumont, D.A., and Chapman, J.W., Large carabid beetle declines in a United Kingdom monitoring network increases evidence for a widespread loss in insect biodiversity, J. Appl. Ecol., 2012, vol. 49, no. 5, p. 1009. https://doi.org/10.1111/j.1365-2664.2012.02194.x

    Article  Google Scholar 

  43. Brown, L.B., Host-related responses and their suppression. Some behavioral consideration, in Chemical Control of Insect Behavior: Theory and Application, Shorey, H.H. and McKelvey, J.J., Jr., Eds., New York: Wiley, 1977, p. 117.

  44. Buchelos, C.T. and Papadopoulou, S.C., Evaluation of the effectiveness of a new pheromonic trap for monitoring Lasioderma serricorne (F.) in tobacco stores, Anz. Schädlingskunde, 1999, vol. 72, no. 4, p. 92. https://doi.org/10.1007/BF02768916

  45. Bucher, G.E. and Bracken, G.K., The bertha armyworm, Mamestra configurata (Lepidoptera: Noctuidae). An estimate of light and pheromone trap efficiency based on captures of newly emerged moths, Can. Entomol., 1979, vol. 111, no. 9, p. 977. https://doi.org/10.4039/Ent111977-9

  46. Buddenbrock, W., von, Die Lichtkompassbewegungen bei den Insekten, insbesondere den Schmetterlingsraupen, Sitz. Heidelberg. Akad. Wiss. Math.-Naturwiss. Klasse, 1917, vol. 8, p. 1.

    Google Scholar 

  47. Bulyginskaya, M.A., Voinyak, V.I., and Bradovsky, V.A., Sterilization of natural populations of lepidopteran pests by the combined use of pheromones and chemosterilants, Inf. Bull. EPRS IOBC, 1987, no. 20, p. 75.

    Google Scholar 

  48. Burdohan, J.A. and Comer, C.M., Cellular organization of an antennal mechanosensory pathway in the cockroach, Periplaneta americana, J. Neurosci., 1996, vol. 16, no. 18, p. 5830. https://doi.org/10.1523/jneurosci.16-18-05830.1996

  49. Burgio, G. and Maini, S., Phenylacetaldehyde trapping of Ostrinia nubilalis (Hb.), Autographa gamma (L.) and hoverflies: trap design efficacy, Boll. Ist. Entomol. Guido Grandi Univ. Studi Bologna, 1994, no. 49, p. 1.

  50. Burkett, D.A., Butler, J.F., and Kline, D.L., Field evaluation of colored light-emitting diodes as attractants for woodland mosquitoes and other Diptera in north central Florida, J. Am. Mosq. Control Assoc., 1998, vol. 14, no. 2, p. 186.

    CAS  Google Scholar 

  51. Burov, V.N. and Novozhilov, K.V., Semiochemicals in plant protection against agricultural pests, Tr. Russ. Entomol. O-va, 2001, vol. 72, p. 3.

    Google Scholar 

  52. Butenandt, A., Beckmann, R., Stamm, D., and Hecker, E., Über den Sexual-Lockstoff des Seidenspinners Bombyx mori. Reindarstellung und Konstitution, Z. Naturforsch., 1959, vol. 14b, p. 283.

  53. Byers, J.A., Modelling female mating success during mass trapping and natural competitive attraction of searching males or females, Entomol. Exp. Appl., 2012, vol. 145, no. 3, p. 228. https://doi.org/10.1111/eea.12006

    Article  Google Scholar 

  54. Bykovskaya, A.V., Trepashko, L.I., and Samonov, A.S., Monitoring of adult corn stem moths in Belarus using a mixture of phenylacetaldehyde and 4-methoxyphenyl alcohol, in Zashchita rastenii. Sbornik nauchnykh trudov Respublikanskogo nauchnogo dochernego unitarnogo predpriyatiya “Institut zashchity rastenii” (Plant Protection: Collected Papers of the Plant Protection Institute), Issue 44, Minsk: Kolorgrad, 2020, p. 150.

  55. Caldwell, M.M., Plant response to solar ultraviolet radiation, in Physiological Plant Ecology I, Lange, O.L., Nobel, P.S., Osmond, C.B., and Ziegler, H., Eds., Berlin etc.: Springer, 1981, p. 169.

  56. Camerini, G., Groppali, R., Rama, F., Maini, S., Semiochemicals of Ostrinia nubilalis: diel response to sex pheromone and phenylacetaldehyde in open field, Bull. Insectol., 2015, vol. 68, no. 1, p. 45.

  57. Cameron, S.A., Lozier, J.D., Strange, J.P., Koch, J., Cordes, N., Solter, L.F., and Griswold, T.L., Patterns of widespread decline in North American bumble bees, Proc. Natl. Acad. Sci., 2011, vol. 108, no. 2, p. 662. https://doi.org/10.1073/pnas.1014743108

    Article  Google Scholar 

  58. Campbell, C.D., Walgenbach, J.F., and Kennedy, G.G., Comparison of black light and pheromone traps for monitoring Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) in tomato, J. Agric. Entomol., 1992, vol. 9, no. 1, p. 17.

  59. Campbell, S.A. and Borden, J.H., Close‐range, in‐flight integration of olfactory and visual information by a host‐seeking bark beetle, Entomol. Exp. Appl., 2006a, vol. 120, no. 2, p. 91. https://doi.org/10.1111/j.1570-7458.2006.00425.x

    Article  Google Scholar 

  60. Campbell, S.A. and Borden, J.H., Integration of visual and olfactory cues of hosts and non-hosts by three bark beetles (Coleoptera: Scolytidae), Ecol. Entomol., 2006b, vol. 31, no. 5, p. 437. https://doi.org/10.1111/j.1365-2311.2006.00809.x

    Article  Google Scholar 

  61. Campbell, S.A. and Borden, J.H., Additive and synergistic integration of multimodal cues of both hosts and non‐hosts during host selection by woodboring insects, Oikos, 2009, vol. 118, no. 4, p. 553. https://doi.org/10.1111/j.1600-0706.2009.16761.x

    Article  Google Scholar 

  62. Cantelo, W.W., Blacklight traps as control agents: an appraisal, Bull. Entomol. Soc. Am., 1974, vol. 20, no. 4, p. 279. https://doi.org/10.1093/besa/20.4.279

    Article  Google Scholar 

  63. Cantelo, W.W. and Jacobson, M., Phenylacetaldehyde attracts moths to bladder flower and to blacklight traps, Environ. Entomol., 1979a, vol. 8, no. 3, p. 444. https://doi.org/10.1093/ee/8.3.444

    Article  CAS  Google Scholar 

  64. Cantelo, W.W. and Jacobson, M., Corn silk volatiles attract many pest species of moths, J. Environ. Sci. Health Part A, 1979b, vol. 14, no. 8, p. 695. https://doi.org/10.1080/10934527909374907

    Article  Google Scholar 

  65. Cantelo, W.W., Goodenough, J.L., Baumhover, A.H., Smith, J.S., Stanley, J.M., and Henneberry, T.J., Mass trapping with blacklight: effects on isolated populations of insects, Environ. Entomol., 1974, vol. 3, no. 3, p. 389. https://doi.org/10.1093/ee/3.3.389

    Article  Google Scholar 

  66. Cardé, R.T. and Baker, T.C., Sexual communication with pheromones, in Chemical Ecology of Insects, Bell, W.J. and Cardé, R.T., Eds., Boston: Springer, 1984, p. 355.

  67. Cardé, R.T. and Minks, A.K., Control of moth pests by mating disruption: successes and constraints, Annu. Rev. Entomol., 1995, vol. 40, p. 559. https://doi.org/10.1146/annurev.en.40.010195.003015

    Article  Google Scholar 

  68. Cardé, R.T., Bau, J., and Elkinton, J.S., Comparison of attraction and trapping capabilities of bucket- and delta-style traps with different pheromone emission rates for gypsy moths (Lepidoptera: Erebidae): implications for understanding range of attraction and utility in surveillance, Environ. Entomol., 2018, vol. 47, no. 1, p. 107. https://doi.org/10.1093/ee/nvx185

    Article  Google Scholar 

  69. Cardoso, P. and Leather, S.R., Predicting a global insect apocalypse, Insect Conserv. Diversity, 2019, vol. 12, no. 4, p. 263. https://doi.org/10.1111/icad.12367

    Article  Google Scholar 

  70. Carrière, Y., Antilla, L., Liesner, L., and Tabashnik, B.E., Large-scale evaluation of association between pheromone trap captures and cotton boll infestation for pink bollworm (Lepidoptera: Gelechiidae), J. Econ. Entomol., 2017, vol. 110, no. 3, p. 1345. https://doi.org/10.1093/jee/tox086

    Article  Google Scholar 

  71. Cassau, S. and Krieger, J., The role of SNMPs in insect olfaction, Cell Tissue Res., 2021, vol. 383, no. 1, p. 21. https://doi.org/10.1007/s00441-020-03336-0

    Article  CAS  Google Scholar 

  72. Chaika, S.Yu., The main features of organization of the insect nervous system and prospects for its study, Eurasian Union Sci., 2015, vol. 4, p. 11.

    Google Scholar 

  73. Chen, Q.H., Zhu, F., Tian, Z., Zhang, W.M., Guo, R., Liu, W., Pan, L., and Du, Y., Minor components play an important role in interspecific recognition of insects: a basis to pheromone based electronic monitoring tools for rice pests, Insects, 2018, vol. 9, no. 4, p. 192. https://doi.org/10.3390/insects9040192

    Article  Google Scholar 

  74. Chernyshev, V.B., The flight of some insects to light as related to the level of natural illumination, Zool. Zh., 1976, vol. 55, no. 11, p. 1635.

    Google Scholar 

  75. Chernyshev, V.B., Ekologiya nasekomykh. Uchebnik (Insect Ecology: a Manual), Moscow: Mosk. Gos. Univ., 1996.

  76. Chittka, L. and Wells, H., Color vision in bees: mechanisms, ecology and evolution in Complex Worlds from Simpler Nervous Systems, Prete, F.R., Ed., Cambridge: MIT Press, 2004, p. 165.

  77. Cho, K.S. and Lee, H.S., Visual preference of diamondback moth, Plutella xylostella, to light-emitting diodes, J. Korean Soc. Appl. Biol. Chem., 2012, vol. 55, no. 5, p. 681. https://doi.org/10.1007/s13765-012-2116-3

  78. Chu, C.C., Che, T.Y., Simmons, A.M., Jackson, C.G., Alexander, P.A., and Henneberry, T.J., Development of light-emitting diode (LED) traps for whiteflies and other insects, IOBC WPRS Bull., 2003, vol. 26, no. 10, p. 27.

    Google Scholar 

  79. Cocco, A., Deliperi, S., and Delrio, G., Potential of mass trapping for Tuta absoluta management in greenhouse tomato crops using light and pheromone traps, IOBC WPRS Bull., 2012, vol. 80, p. 319.

  80. Cohnstaedt, L.E.E., Gillen, J.I., and Munstermann, L.E., Light- emitting diode technology improves insect trapping, J. Am. Mosq. Control Assoc., 2008, vol. 24, no. 2, p. 331. https://doi.org/10.2987/5619.1

    Article  Google Scholar 

  81. Čokl, A.A. and Millar, J.G., Manipulation of insect signaling for monitoring and control of pest insects, in Biorational Control of Arthropod Pests, Ishaaya, I. and Horowitz, A., Eds., Dordrecht: Springer, 2009, p. 279. https://doi.org/10.1007/978-90-481-2316-2_11

  82. Coll, M., Gavish, S., and Dori, I., Population biology of the potato tuber moth, Phthorimaea operculella (Lepidoptera: Gelechiidae), in two potato cropping systems in Israel, Bull. Entomol. Res., 2000, vol. 90, no. 4, p. 309. https://doi.org/10.1017/S0007485300000432

  83. Conrad, K.F., Warren, M.S., Fox, R., Parsons, M.S., and Woiwod, I.P., Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis, Biol. Conserv., 2006, vol. 132, p. 279. https://doi.org/10.1016/j.biocon.2006.04.020

    Article  Google Scholar 

  84. Cook, S.M., Khan, Z.R., and Pickett, J.A., The use of push-pull strategies in integrated pest management, Annu. Rev. Entomol., 2007, vol. 52, p. 375. https://doi.org/10.1146/annurev.ento.52.110405.091407

    Article  CAS  Google Scholar 

  85. Cordillot, F. and Duelli, P., Adaptive dispersal in the European corn borer Ostrinia nubilalis (Lep.: Pyralidae) in northwestern Switzerland, Acta Phytopathol. Entomol. Hung., 1989, vol. 24, no. 1, p. 65.

  86. Cork, A., Kamal, N.Q., Alam, S.N., Choudhury, J.C.S., and Talekar, N.S., Pheromone and their applications to insect pest control – a review, Bangladesh J. Entomol., 2003, vol. 13, no. 2, p. 1.

    Google Scholar 

  87. Cox, P.D., Potential for using semiochemicals to protect stored products from insect infestation, J. Stored Prod. Res., 2004, vol. 40, no. 1, p. 1. https://doi.org/10.1016/S0022-474X(02)00078-4

    Article  CAS  Google Scholar 

  88. Cristman, D., Voineac, V., and Clinciu Radu, R.A., The effectiveness of Admiral 10 EC as an insecticide to control the pest of Grapholitha molesta Busck (Lepidoptera, Tortricidae), Lucr. Ști. Univ. Sti. Agr. Med. Veter. Ion Ionescu de la Brad Ser. Agr., 2017, vol. 60, no. 2, p. 241.

  89. Crook, D.J., Francese, J.A., Zylstra, K.E., Fraser, I., Sawyer, A., Bartels, D.W., Lance, D.R., and Mastro, V.C., Laboratory and field response of the emerald ash borer (Coleoptera: Buprestidae), to selected regions of the electromagnetic spectrum, J. Econ. Entomol., 2009, vol. 102, no. 6, p. 2160. https://doi.org/10.1603/029.102.0620

    Article  Google Scholar 

  90. Cros, M.J., Aubertot, J.N., Gaba, S., Reboud, X., Sabbadin, R., and Peyrard, N., Improving Pest Monitoring Networks in order to reduce pesticide use in agriculture, arXiv, 2020, art. 2002.00951. https://doi.org/10.48550/arXiv.2002.00951

  91. Crummay, F.A. and Atkinson, B.W., Atmospheric influences on light-trap catches of the brown planthopper rice pest, Agric. Forest Meteorol., 1997, vol. 88, no. 1, p. 181. https://doi.org/10.1016/S0168-1923(97)00040-3

    Article  Google Scholar 

  92. Cui, G.Z. and Zhu, J.J., Pheromone-based pest management in China: past, present, and future prospects, J. Chem. Ecol., 2016, vol. 42, no. 7, p. 557. https://doi.org/10.1007/s10886-016-0731-x

    Article  CAS  Google Scholar 

  93. Daniel, C., Barloggio, G., Stoeckli, S., Luka, H., and Niggli, U., Management of crops to prevent pest outbreaks, in Handbook of Pest Management in Organic Farming, Vacante, V. and Kreiter, S., Eds., CAB International, 2018, p. 1.

  94. Dar, S.A., Ansari, M.J., Naggar, Y.A., Hassan, S., Nighat, S., Zehra, S.B., Rashid, R., Hassan, M., and Hussain, B., Causes and reasons of insect decline and the way forward, in Global Decline of Insects, El-Shafie, H., Ed., London: IntechOpen, 2021. https://doi.org/10.5772/intechopen.98786

  95. Dara, S.K., The new integrated pest management paradigm for the modern age, J. Integr. Pest Manage., 2019, vol. 10, no. 1, art. 12. https://doi.org/10.1093/jipm/pmz010

  96. Das Chakraborty, S. and Sachse, S., Olfactory processing in the lateral horn of Drosophila, Cell Tissue Res., 2021, vol. 383, p. 113. https://doi.org/10.1007/s00441-020-03392-6

  97. De Bruyne, M. and Baker, T.C., Odor detection in insects: volatile codes, J. Chem. Ecol., 2008, vol. 34, no. 7, p. 882. https://doi.org/10.1007/s10886-008-9485-4

    Article  CAS  Google Scholar 

  98. Debolt, J.W., Wolf, W.W., Henneberry, T.J., and Vail, P.V., Evaluation of Light Traps and Sex Pheromone for Control of Cabbage Looper and Other Lepidopterous Insect Pests of Lettuce, U.S. Department of Agriculture, Technical Bulletin 1606, 1979.

  99. Delisle, J., West, R.J., and Bowers, W.W., The relative performance of pheromone and light traps in monitoring the seasonal activity of both sexes of the eastern hemlock looper, Lambdina fiscellaria fiscellaria, Entomol. Exp. Appl., 1998, vol. 89, no. 1, p. 87. https://doi.org/10.1046/j.1570-7458.1998.00385.x

  100. Deng, J.Y., Wei, H.Y., Huang, Y.P., and Du, J.W., Enhancement of attraction to sex pheromones of Spodoptera exigua by volatile compounds produced by host plants, J. Chem. Ecol., 2004, vol. 30, no. 10, p. 2037. https://doi.org/10.1023/B:JOEC.0000045593.62422.73

  101. Dent, D. and Binks, R.H., Insect Pest Management, 3rd Ed., CABI, 2020.

  102. Dent, D.R. and Pawar, C.S., The influence of moonlight and weather on catches of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in light and pheromone traps, Bull. Entomol. Res., 1988, vol. 78, no. 3, p. 365. https://doi.org/10.1017/S0007485300013146

  103. DeRozari, M.B., Showers, W.B., and Shaw, R.H., Environment and the sexual activity of the European corn borer, Environ. Entomol., 1977, vol. 6, no. 5, p. 657. https://doi.org/10.1093/ee/6.5.657

    Article  Google Scholar 

  104. Dethier, V.G., The Physiology of Insect Senses, London: Methuen; New York: Wiley, 1963.

  105. Dolzhenko, T.V., Introduction of biological and environment friendly means of agricultural pest control, Extended Abstract of Doctoral Dissertation in Biology, St. Petersburg, 2017.

  106. Dolzhenko, V.I., Burkova, L.A., and Dolzhenko, T.V., Application of synthetic sex pheromone Shin-Etsu MD STT, D, Zashch. Karantin Rast., 2018. no. 5, p. 23. https://www.elibrary.ru/item.asp?id=34859159

    Google Scholar 

  107. Donners, M., van Grunsven, R.H., Groenendijk, D., van Langevelde, F., Bikker, J.W., Longcore, T., and Veenendaal, E., Colors of attraction: modeling insect flight to light behavior, J. Exp. Zool. Part A, 2018, vol. 329, no. 8, p. 434. https://doi.org/10.1002/jez.2188

    Article  Google Scholar 

  108. Dornhaus, A. and Franks, N.R., Individual and collective cognition in ants and other insects (Hymenoptera: Formicidae), Myrmecol. News, 2008, vol. 11, p. 215.

    Google Scholar 

  109. Dubinin, D.M., A Dobrolov Light Trap for Insects, 2022. https://dobrolov.com/info/news/svetovaya-lovushka-dlya-

  110. Dudareva, N., Pichersky, E., and Gershenzon, J., Biochemistry of plant volatiles, Plant Physiol., 2004, vol. 135, no. 4, p. 1893. https://doi.org/10.1104/pp.104.049981

    Article  CAS  Google Scholar 

  111. Dudareva, N., Klempien, A., Muhlemann, J.K., and Kaplan, I., Biosynthesis, function and metabolic engineering of plant volatile organic compounds, New Phytol., 2013, vol. 198, no. 1, p. 16. https://doi.org/10.1111/nph.12145

    Article  CAS  Google Scholar 

  112. Duehl, A.J., Cohnstaedt, L.W., Arbogast, R.T., and Teal, P.E., Evaluating light attraction to increase trap efficiency for Tribolium castaneum (Coleoptera: Tenebrionidae), J. Econ. Entomol., 2011, vol. 104, no. 4, p. 1430. https://doi.org/10.1603/EC10458

  113. Edwin, J. and Ambrose, D.P., Diversity and population dynamics of light trapped insects from Courtallam Tropical Rainforest, Western Ghats, Tamil Nadu, South India, in Insect Pest Management, A Current Scenario, Ambrose, D.P., Ed., Palayamkottai: Entomology Research Unit, St. Xavier’s Coll., 2011, p. 58.

  114. Eggleton, P., The state of the world’s insects, Annu. Rev. Environ. Res., 2020, vol. 45, no. 1, p. 61. https://doi.org/10.1146/annurev-environ-012420-050035

    Article  Google Scholar 

  115. Eigenbrode, S.D., Birch, A.N.E., Lindzey, S., Meadow, R., and Snyder, W.E., A mechanistic framework to improve understanding and applications of push-pull systems in pest management, J. Appl. Ecol., 2016, vol. 53, no. 1, p. 202. https://doi.org/10.1111/1365-2664.12556

    Article  Google Scholar 

  116. Eisenhauer, N., Bonn, A., and Guerra, C.A., Recognizing the quiet extinction of invertebrates, Nat. Comm., 2019, vol. 10, no. 1, art. 50. https://doi.org/10.1038/s41467-018-07916-1

  117. Elizarov, Yu.A., Khemoretseptsiya nasekomykh (Chemoreception in Insects), Moscow, 1978.

  118. El-Sayed, A.M., Suckling, D.M., Wearing, C.H., and Byers, J.A., Potential of mass trapping for long-term pest management and eradication of invasive species, J. Econ. Entomol., 2006, vol. 99, no. 5, p. 1550. https://doi.org/10.1093/jee/99.5.1550

    Article  CAS  Google Scholar 

  119. El-Wakeil, N.E., Insect economic levels in relation to crop production, Arch. Phytopathol. Plant Prot., 2010, vol. 43, no. 17, p. 1711. https://doi.org/10.1080/03235400902753584

    Article  Google Scholar 

  120. Emelyanov, V.A. and Bulyginskaya, M.A., Use of pheromones for control of codling moth Laspeyresia pomonella L. (Lepidoptera, Tortricidae) by elimination and disorientation of males, Entomol. Rev., 1999, vol. 79, no. 5, p. 555.

  121. Endo, N., Effective monitoring of the population dynamics of Nezara viridula and Nezara antennata (Heteroptera: Pentatomidae) using a light trap in Japan, App. Entomol. Zool., 2016, vol. 51, no. 3, p. 341. https://doi.org/10.1007/s13355-016-0404-9

  122. Epsky, N.D., Morrill, W.L., and Mankin, R.W., Traps for capturing insects, in Encyclopedia of Entomology, 2nd Edition, Capinera, J.L., Ed., Berlin; Heidelberg: Springer Science & Business Media, 2008, p. 3887.

  123. Esipenko, L.P., Biological invasions as a global problem in southern Russia, Yug Ross. Ekol. Razv., 2012, no. 4, p. 21.

    Google Scholar 

  124. Evenden, M.L., Borden, J.H., and van Sickle, G.A., Predictive capabilities of a pheromone-based monitoring system for western hemlock looper (Lepidoptera: Geometridae), Environ. Entomol., 1995, vol. 24, no. 4, p. 933. https://doi.org/10.1093/ee/24.4.933

    Article  Google Scholar 

  125. Evenden, M.L. and Haynes, K.F., Potential for the evolution of resistance to pheromone‐based mating disruption tested using two pheromone strains of the cabbage looper, Trichoplusia ni, Entomol. Exp. Appl., 2001, vol. 100, no. 1, p. 131.

  126. Filimonov, G.I. and Bogdanova, T.P., The main factors affecting codling moth captures with pheromone traps, in Feromony nasekomykh i razrabotka putei ikh prakticheskogo ispol’zovaniya. Sbornik nauchnykh trudov (Insect Pheromones and Development of Ways of Their Practical Use: Collected Papers), Sazonov, A.P., Ed., Leningrad: VIZR, 1988, p. 63.

  127. Fleischer, J., Pregitzer, P., Breer, H., and Krieger, J., Access to the odor world: olfactory receptors and their role for signal transduction in insects, Cell. Molec. Life Sci., 2018, vol. 75, no. 3, p. 485. https://doi.org/10.1007/s00018-017-2627-5

    Article  CAS  Google Scholar 

  128. Fletcher-Howell, G., Ferro, D.N., and Butkewich, S., Pheromone and blacklight trap monitoring of adult European corn borer (Lepidoptera: Pyralidae) in western Massachusetts, Environ. Entomol., 1983, vol. 12, no. 2, p. 531. https://doi.org/10.1093/ee/12.2.531

    Article  Google Scholar 

  129. Forister, M.L., Pelton, E.M., and Black, S.H., Declines in insect abundance and diversity: we know enough to act now, Conserv. Sci. Pract., 2019, vol. 1, no. 8, art. e80. https://doi.org/10.1111/csp2.80

  130. Foster, S.P. and Harris, M.O., Behavioral manipulation methods for insect pest-management, Annu. Rev. Entomol., 1997, vol. 42, p. 123. https://doi.org/10.1146/annurev.ento.42.1.123

    Article  CAS  Google Scholar 

  131. Fraenkel, G.S., The raison d’être of secondary plant substances: these odd chemicals arose as a means of protecting plants from insects and now guide insects to food, Science, 1959, vol. 129, no. 3361, p. 1466. https://doi.org/10.1126/science.129.3361.1466

    Article  CAS  Google Scholar 

  132. Frérot, B., Leppik, E., Groot, A.T., Unbehend, M., and Holopainen, J.K., Chemical signatures in plant-insect interactions, Adv. Bot. Res., 2017, vol. 81, p. 139. https://doi.org/10.1016/bs.abr.2016.10.003

    Article  Google Scholar 

  133. Frolov, A.N., The beet webworm is a common problem for Russia and China, Zashch. Karantin Rast., 2015, no. 4, p. 14.

    Google Scholar 

  134. Frolov, A.N. and Grushevaya, I.V., Pheromone monitoring of the European corn borer Ostrinia nubilalis Hbn. (Lepidoptera: Crambidae) in Krasnodar Territory: dynamics of males and larvae on corn crops, Vestn. Zashch. Rast., 2017, no. 1, p. 55.

  135. Frolov, A.N. and Ryabchinskaya, T.A., On the factors reducing the efficiency of synthetic pheromones of the European corn borer in its new northern outbreak foci, Vestn. Zashch. Rast., 2018, no. 1, p. 5. https://doi.org/10.31993/2308-6459-2018-1(95)-5-11

    Article  Google Scholar 

  136. Frolov, A.N. and Trishkin, D.S., Factors affecting the concentration of overwintered adults of the European corn borer Ostrinia nubilalis (Lepidoptera, Pyraustidae) at their mating sites in Krasnodar Territory, Zool. Zh., 1992, vol. 71, no. 10, p. 144.

  137. Frolov, A.N., Trishkin, D.S., Dyatlova, K.D., and Chuma- kov, M.A., Spatial distribution of adults of the European corn borer Ostrinia nubilalis in the zone of its bivoltine development, Zool. Zh., 1996, vol. 75, no. 11, p. 1644.

  138. Frolov, A.N., Grushevaya, I.V., Kononchuk, A.G., Ryabchinskaya, T.A., Kolesnikov, V.B., and Tóth, M., Evaluation of efficiency of the European corn borer monitoring using Bisex Lure, according to trials in Kuban and the Central Chernozem Region, in Sovremennoe sostoyanie, problemy i perspektivy razvitiya agrarnoi nauki. Materialy V Mezhdunarodnoi nauchnoi konferentsii, 21–25 sentyabrya 2020 g., Respublika Krym, Rossiya (Current State, Problems and Prospects of Agrarian Science: Proc. of the 5th Int. Sci. Conf., September 21–25, 2020, Republic of Crimea, Russia), Pashtetsky, V.S., Ed., Simferopol: Arial, 2020a, p. 104. https://doi.org/10.33952/2542-0720-2020-5-9-10-51

  139. Frolov, A.N., Miltsyn, A.A., Zakharova, Yu.A., Grushevaya, I.V., Kononchuk, A.G., and Tokarev, Yu.S., A combined light and pheromone trap for flying insects, RF Patent RU 201632 U1, 24.12.2020, Patent application 2020127904 of 21.08.2020, 2020b.

  140. Frolov, A.N., Grushevaya, I.V., and Kononchuk, A.G., LEDs and semiochemicals vs. sex pheromones: tests of the European corn borer attractivity in the Krasnodar Territory, Plant Prot. News, 2020c, vol. 103, no. 4, p. 270. https://doi.org/10.31993/2308-6459-2020-103-4-13989

    Article  Google Scholar 

  141. Frolov, A.N., Grushevaya, I.V., and Kononchuk, A.G., Sovremennye tipy lovushek dlya monitoringa cheshuekrylykh na primere kukuruznogo motyl’ka. Monografiya (Modern Types of Traps for Monitoring Lepidoptera, by Example of the European Corn Borer: a Monograph), St. Petersburg: Naukoemkie Tekhnologii, 2021.

  142. Frost, S.W., Light traps for insect collection, survey and control, Bull. Pa. State Agric. Exp. Stn., 1952, vol. 550, p. 1.

    Google Scholar 

  143. Furlan, L., Pozzebon, A., Duso, C., Simon-Delso, N., Sánchez-Bayo, F., Marchand, P.A., Codato, F., Bijleveld van Lexmond, M., and Bonmatin, J.M., An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 3: Alternatives to systemic insecticides, Environ. Sci. Poll. Res., 2021, vol. 28, p. 11798. https://doi.org/10.1007/s11356-017-1052-5

    Article  Google Scholar 

  144. Gadagkar, R., Chandrashekara, K., and Nair, P., Insect species diversity in tropics: sampling methods and a case study, J. Bombay Nat. Hist. Soc., 1990, vol. 87, no. 3, p. 337.

    Google Scholar 

  145. Garcia, J.E., Hung, Y.S., Greentree, A.D., Rosa, M.G., End-ler, J.A., and Dyer, A.G., Improved color constancy in honey bees enabled by parallel visual projections from dorsal ocelli, Proc. Natl. Acad. Sci., 2017, vol. 114, no. 29, p. 7713. https://doi.org/10.1073/pnas.1703454114

    Article  CAS  Google Scholar 

  146. Garris, H.W. and Snyder, J.A., Sex-specific attraction of moth species to ultraviolet light traps, Southeast. Natur., 2010, vol. 9, no. 3, p. 427. https://doi.org/10.1656/058.009.0302

    Article  Google Scholar 

  147. Gaydecki, P., Automated moth flight analysis in the vicinity of artificial light, Bull. Entomol. Res., 2019, vol. 109, p. 127. https://doi.org/10.1017/S0007485318000378

    Article  CAS  Google Scholar 

  148. Gazalov, V.S., Belenov, V.N., and Evdokimov, A.Yu., Arrangement of LED emitters in plant protection installations with regard to color additivity, Vestn. Agroprom. Kompl., 2013, vol. 2, p. 101.

    Google Scholar 

  149. Gazalov, V.S., Electro-optical protection of orchards against insect pests, Doctoral Dissertation in Engineering, Zernograd, 2000.

  150. Gebreziher, H.G. and Gebreziher, F.G., Effect of integrating night-time light traps and push-pull method on monitoring and deterring adult fall armyworm (Spodoptera frugiperda), Int. J. Entomol. Res., 2020, vol. 5, no. 1, p. 28.

  151. Gentry, C.R. and Davis, D.R., Weather: influence on catches of adult cabbage loopers in traps baited with BL only or with BL plus synthetic sex pheromone, Environ. Entomol., 1973, vol. 2, no. 6, p. 1074. https://doi.org/10.1093/ee/2.6.1074

    Article  Google Scholar 

  152. Gentry, C.R., Dickerson, W.A., Henneberry, T.J., Baumho- ver, A.H., and Stanley, J.M., Evaluation of Pheromone-Baited Blacklight Traps for Controlling Cabbage Loopers on Shade-Grown Tobacco in Florida, Agricultural Research Service, US Department of Agriculture, Production Research Report No. 133, 1971.

  153. Giorio, C., Safer, A., Sánchez-Bayo, F., Tapparo, A., Lentola, A., Girolami, V., Bijleveld van Lexmond, M., and Bonmatin, J.M., An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 1: New molecules, metabolism, fate, and transport, Environ. Sci. Poll. Res., 2021, vol. 28, p. 11716. https://doi.org/10.1007/s11356-017-0394-3

    Article  CAS  Google Scholar 

  154. Glass, E.H. and Thurston, H.D., Traditional and modern crop protection in perspective, Bioscience, 1978, vol. 28, no. 2, p. 109. https://doi.org/10.2307/1307424

    Article  Google Scholar 

  155. Golub, V.B., Tsurikov, M.N., and Prokin, A.A., Kollektsii nasekomykh: sbor, obrabotka i khranenie materiala (Insect Collections: Obtaining, Processing, and Storing Entomological Material), Moscow: KMK Scientific Press, 2012.

  156. Goncharov, N.R., Development of innovative processes in plant protection, Zashch. Karantin Rast., 2010, no. 4, p. 4.

    Google Scholar 

  157. Gordon-Weeks, R. and Pickett, J.A., Role of natural products in nature: plant-insect interactions, in Plant-Derived Natural Products, Osbourn, A. and Lanzotti, V., Eds., New York: Springer, 2009, p. 321. https://doi.org/10.1007/978-0-387-85498-4_15

  158. Gornostaev, G.N., Designs of light traps for collecting insects at night, Vestn. Mosk. Univ., 1961, vol. 4, p. 51.

    Google Scholar 

  159. Gornostaev, G.N., Introduction to the ethology of photoxenous insects: flight of insects to artificial light sources, in Etologiya nasekomykh (Ethology of Insects), Tobias, V.I., Ed., Leningrad: Nauka, 1984, p. 101.

  160. Gosudarstvennyi katalog pestitsidov i agrokhimikatov, razreshennykh k primeneniyu na territorii Rossiiskoi Federatsii. Chast’ I. Pestitsidy (Official Catalogue of Pesticides and Agrochemicals Approved for Use in the Russian Federation. Part 1: Pesticides), Moscow: Minselkhoz, 2022. https://mcx.gov.ru/upload/iblock/34c/bgmi1os2l367s1r3275yroksqx27xrqa.zip

  161. Goulson, D., Call to restrict neonicotinoids, Science, 2018, vol. 360, no. 6392, p. 973. https://doi.org/10.1126/science.aau0432

    Article  CAS  Google Scholar 

  162. Goulson, D., The insect apocalypse, and why it matters, Curr. Biol., 2019, vol. 29, no. 19, p. R967. https://doi.org/10.1016/j.cub.2019.06.069

  163. Gregg, P.C., Del Socorro, A.P., and Landolt, P.J., Advances in attract-and-kill for agricultural pests: beyond pheromones, Annu. Rev. Entomol., 2018, vol. 63, p. 453. https://doi.org/10.1146/annurev-ento-031616-035040

    Article  CAS  Google Scholar 

  164. Grichanov, I.Ya. and Ovsyannikova, E.I., Feromony dlya fitosanitarnogo monitoringa vrednykh cheshuekrylykh nasekomykh (Pheromones for Phytosanitary Monitoring of Lepidopteran Pests), St. Petersburg, 2005.

  165. Grubisic, M., van Grunsven, R.H., Kyba, C.C., Manfrin, A., and Hölker, F., Insect declines and agroecosystems: does light pollution matter? Ann. Appl. Biol., 2018, vol. 173, no. 2, p. 180. https://doi.org/10.1111/aab.12440

    Article  Google Scholar 

  166. Gruntman, E. and Turner, G., Integration of the olfactory code across dendritic claws of single mushroom body neurons, Nat. Neurosci., 2013, vol. 16, p. 1821. https://doi.org/10.1038/nn.3547

    Article  CAS  Google Scholar 

  167. Grushevaya, I.V., Frolov, A.N., Ryabchinskaya, T.A., Trepashko, L.I., and Bykovskaya, A.V., New outbreaks of the European corn borer Ostrinia nubilalis in Belarus and Russia: An alarming challenge to the established knowledge, in Sovremennye problemy entomologii Vostochnoi Evropy. Materialy I Mezhdunarodnoi nauchno-prakticheskoi konferentsii (Modern Problems of Entomology in Eastern Europe: Proc. of the 1st Int. Conf.), Borodin, O.I. and Tsinkevich, V.A., Ed., Minsk: Ekoperspektiva, 2015, p. 93.

  168. Grushevaya, I.V., Kononchuk, A.G., Malysh, S.M., Miltsyn, A.A., and Frolov, A.N., An LED trap for monitoring the European corn borer Ostrinia nubilalis: test results in Krasnodar Territory, Vestn. Zashch. Rast., 2019, no. 4, no. 102, p. 49. https://doi.org/10.31993/2308-6459-2019-4-102-49-54

  169. Guerrero, S., Brambila, J., and Meagher, R.L., Efficacies of four pheromone-baited traps in capturing male Helicoverpa (Lepidoptera: Noctuidae) moths in northern Florida, Fla. Entomol., 2014, vol. 97, no. 4, p. 1671. https://doi.org/10.1653/024.097.0441

  170. Gullan, P.J. and Cranston, P.S., The Insects: an Outline of Entomology. 5th Edition, The Atrium, UK: John Wiley & Sons, 2014.

  171. Gutiérrez-Cárdenas, O.G., Cortez-Madrigal, H., Malo, E.A., Gómez-Ruíz, J., and Nord, R., Physiological and pathogenical characterization of Beauveria bassiana and Metarhizium anisopliae isolates for management of adult Spodoptera frugiperda, Southwest. Entomol., 2019, vol. 44, no. 2, p. 409. https://doi.org/10.3958/059.044.0206

  172. Haider, I., Akhtar, M., Noman, A., and Qasim, M., Population trends of some insect pests of rice crop on light trap and its relation to abiotic factors in Punjab Pakistan, Pak. J. Zool., 2020, vol. 53, no. 3, p. 1015.

    Google Scholar 

  173. Hallem, E.A., Dahanukar, A., and Carlson, J.R., Insect odor and taste receptors, Annu. Rev. Entomol., 2006, vol. 51, p. 113. https://doi.org/10.1146/annurev.ento.51.051705.113646

    Article  CAS  Google Scholar 

  174. Hallmann, C., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., Stenmans, W., Müller, A., Sumser, H., Hörren, T., Goulson, D., and de Kroon, H., More than 75 percent decline over 27 years in total flying insect biomass in protected areas, PLoS One, 2017, vol. 12, no. 10, art. e0185809. https://doi.org/10.1371/journal.pone.0185809

  175. Hansson, B.S. and Stensmyr, M.C., Evolution of insect olfaction, Neuron, 2011, vol. 72, no. 5, p. 698. https://doi.org/10.1016/j.neuron.2011.11.003

    Article  CAS  Google Scholar 

  176. Hansson, B.S., From organism to molecule and back – insect olfaction during 40 years, J. Chem. Ecol., 2014, vol. 40, no. 5, p. 409. https://doi.org/10.1007/s10886-014-0437

    Article  CAS  Google Scholar 

  177. Harborne, J.B., Twenty-five years of chemical ecology, Nat. Prod. Rep., 2001, vol. 18, no. 4, p. 361. https://doi.org/10.1039/B005311M

    Article  CAS  Google Scholar 

  178. Harrington, R., Taylor, M.S., Shortall, C.R., Alderson, L., Mallott, M., and Verrier, P.J., The Rothamsted Insect Survey: old traps, new tricks, Aspects Appl. Biol., 2012, vol. 117, p. 157.

    Google Scholar 

  179. Harris, J.E., Insect light traps, in Insect Management for Food Storage and Processing. 2nd Edition, Heaps, J.W., Ed., St. Paul, Minnesota: American Association of Cereal Chemists International, 2006, p. 55.

  180. Harris, J.E., Rodenhouse, N.L., and Holmes, R.T., Decline in beetle abundance and diversity in an intact temperate forest linked to climate warming, Biol. Conserv., 2019, vol. 240, art. 108219. https://doi.org/10.1016/j.biocon.2019.108219

  181. Hathaway, D.O., Codling Moth: Field Evaluation of Blacklight and Sex Attractant Traps, Agricultural Research Service, U.S. Department of Agriculture. Advances in Agricultural Technology, Western Series, No. 19, 1981.

  182. Hegazi, E., Khafagi, W.E., Konstantopoulou, M., Raptopoulos, D., Tawfik, H., El-Aziz, G.A., El-Rahman, S.A., Atwa, A., Aggamy, E., and Showeil, S., Efficient mass-trapping method as an alternative tactic for suppressing populations of leopard moth (Lepidoptera: Cossidae), Ann. Entomol. Soc. Am., 2009, vol. 102, no. 5, p. 809. https://doi.org/10.1603/008.102.0507

    Article  Google Scholar 

  183. Hendricks, D.E., Graham, H.M., Guerra, R.J., and Perez, C.T., Comparison of the numbers of tobacco budworms and bollworms caught in sex pheromone traps vs. blacklight traps in Lower Rio Grande Valley, Texas, Environ. Entomol., 1973, vol. 2, no. 5, p. 911. https://doi.org/10.1093/ee/2.5.911

    Article  Google Scholar 

  184. Hienton, T.E., Summary of Investigations of Electric Insect Traps, Washington: Agricultural Research Service, U.S. Department of Agriculture, Technical Bulletin No. 1498, 1974.

  185. Hill, L., Long-term light trap data from Tasmania, Australia, Plant Prot. Q., 2013, vol. 28, no. 1, p. 22.

    Google Scholar 

  186. Hladik, M.L., Main, A.R., and Goulson, D., Environmental risks and challenges associated with neonicotinoid insecticides, Environ. Sci. Technol., 2018, vol. 52, no. 6, p. 3329. https://doi.org/10.1021/acs.est.7b06388

    Article  CAS  Google Scholar 

  187. Ho, D.T. and Reddy, K.S., Monitoring of lepidopterous stem-borer population by pheromone and light traps, Int. J. Trop. Insect Sci., 1983, vol. 4, no. 1, p. 19. https://doi.org/10.1017/S1742758400003982

    Article  Google Scholar 

  188. Holdcraft, R., Rodriguez-Saona, C., and Stelinski, L.L., Pheromone autodetection: evidence and implications, Insects, 2016, vol. 7, no. 2, p. 17. https://doi.org/10.3390/insects7020017

    Article  Google Scholar 

  189. Holder, P.J., Jones, A., Tyler, C.R., and Cresswell, J.E., Fipronil pesticide as a suspect in historical mass mortalities of honey bees, Proc. Natl. Acad. Sci., 2018, vol. 115, no. 51, p. 13033. https://doi.org/10.1073/pnas.180493411

    Article  CAS  Google Scholar 

  190. Holguin, G.A., Lehman, B.L., Hull, L.A., Jones, V.P., and Park, J., Electronic traps for automated monitoring of insect populations, IFAC Proc., 2010, vol. 43, no. 26, p. 49. https://doi.org/10.3182/20101206-3-JP-3009.00008

    Article  Google Scholar 

  191. Holkenbrink, C., Ding, B.J., Wang, H.L., Dam, M.I., Petkevicius, K., Kildegaard, K.R., Wenning, L., Sinkwitz, C., Lorantfy, B., Koutsoumpeli, E., Franca, L., Pires, M., Bernardi, C., Urrutia, W., Mafra-Neto, A., Ferreira, B.S., Raptopoulos, D., Konstantopoulou, M., Lofstedt, C., and Borodina, I., Production of moth sex pheromones for pest control by yeast fermentation, Metab. Eng., 2020, vol. 62, p. 312. https://doi.org/10.1016/j.ymben.2020.10.001

    Article  CAS  Google Scholar 

  192. Holopainen, J.K. and Blande, J.D., Where do herbivore- induced plant volatiles go? Front. Plant Sci., 2013, vol. 4, art. 185. https://doi.org/10.3389/fpls.2013.00185

  193. Howse, P., Stevens, J.M., and Jones, O.T., Insect Pheromones and Their Use in Pest Management, Dordrecht: Springer, 1998.

  194. Hsiao, H.S., Flight paths of night-flying moths to light, J. Insect Physiol., 1973, vol. 19, no. 1, p. 1971. https://doi.org/10.1016/0022-1910(73)90191-1

    Article  CAS  Google Scholar 

  195. Hufnagel, L. and Gimesi, L., The possibilities of biodiversity monitoring based on Hungarian light trap networks, Appl. Ecol. Environ. Res., 2010, vol. 8, no. 3, p. 223.

    Article  Google Scholar 

  196. Hufnagel, L., Nowinszky, L., Hill, L., Puskás, J., and Tar, K., Moth species caught by ultraviolet and visible light sources in connection with their wingspan, in Light Pollution, Urbanization and Ecology, Hufnagel, L., Ed., London: IntechOpen, 2022, p. 132. https://doi.org/10.5772/intechopen.102718

  197. Hui, F.A.N., Youju, J.I.N., Jiquan, L.I., and Huaju, C., Advances on plant volatile semiochemicals attracting herbivorous insects, J. Beijing Forest. Univ., 2004, vol. 26, no. 3, p. 76.

    Google Scholar 

  198. Hummel, H.E., Langner, S.S., and Eisinger, M.T., Pheromone dispensers, including organic polymer fibers, described in the crop protection literature: comparison of their innovation potential, Comm. Agric. Appl. Biol. Sci., 2013, vol. 78, no. 2, p. 233.

    Google Scholar 

  199. Ioriatti, C. and Lucchi, A., Semiochemical strategies for tortricid moth control in apple orchards and vineyards in Italy, J. Chem. Ecol., 2016, vol. 42, no. 7, p. 571. https://doi.org/10.1007/s10886-016-0722-y

    Article  CAS  Google Scholar 

  200. Ishikawa, Y., Ed., Insect Sex Pheromone Research and Beyond: from Molecules to Robots, Gateway East, Singapore: Springer Nature, 2020. https://doi.org/10.1007/978-981-15-3082-1

  201. Ismailov, V.Ya., Sadkovsky, V.T., Sokolov, Yu.G., Shumi- lov, Yu.V., and Mkrtchian, A.G., Experience in developing insect traps with extra bright LEDs, in Biologicheskaya zashchita rastenii – osnova stabilizatsii agroekosistem. Vypusk 9. Materialy mezhdunarodnoi nauchno-prakticheskoi konferentsii, 20–22 sentyabrya 2016 (Biological Plant Protection as a Basis for Agroecosystem Stability. Issue 9: Proc. of the Int. Conf., September 20–22, 2016), Krasnodar, 2016, p. 45.

  202. Izhevsky, S.S., Invasion of alien insect species is a threat to ecological and economic security of Russia, AgroXXI, 2008, vol. 4, p. 33.

    Google Scholar 

  203. Izquierdo, J.I., Helicoverpa armigera (Hübner) (Lep., Noctuidae): relationship between captures in pheromone traps and egg counts in tomato and carnation crops, J. Appl. Entomol., 1996, vol. 120, no. 1, p. 281. https://doi.org/10.1111/j.1439-0418.1996.tb01607.x

  204. Jackson, M.D., Brown, G.C., Nordin, G.L., and Johnson, D.W., Autodissemination of a baculovirus for management of tobacco budworms (Lepidoptera: Noctuidae) on tobacco, J. Econ. Entomol., 1992, vol. 85, no. 3, p. 710. https://doi.org/10.1093/jee/85.3.710

    Article  Google Scholar 

  205. Jayasinghe, G.G., Gunaratne, W.D.L., Darshanee, H.L.C., Griepink, F.C., Louwaars, N.P., and Stol, W., Environmentally Sound Insect Control in Cinnamon. A Feasibility Study on the Use of Insect Pheromones to Replace Large-Scale Use of Insecticides, Wageningen: Plant Research International B. V., Report No. 119, 2006. https://edepot.wur.nl/18992

  206. Jeger, M.J., Improved understanding of dispersal in crop pest and disease management: current status and future directions, Agric. Forest Meteorol., 1999, vol. 97, no. 4, p. 331. https://doi.org/10.1016/S0168-1923(99)00076-3

    Article  Google Scholar 

  207. Jeon, J.H., Oh, M.S., Cho, K.S., and Lee, H.S., Phototactic response of the rice weevil, Sitophilus oryzae Linnaeus (Coleoptera: Curculionidae), to light-emitting diodes, J. Korean Soc. Appl. Biol. Chem., 2012, vol. 55, p. 35. https://doi.org/10.1007/s13765-012-0006-3

  208. Jha, G., Shankar, R., Bajpai, A.B., Kumar, A., and Sharma, A., Insects from light trap: do they represent total diversity, Progr. Res. Int. J., 2017, vol. 12, no. 3, p. 372.

    Google Scholar 

  209. Jonason, D., Franzén, M., and Ranius, T., Surveying moths using light traps: effects of weather and time of year, PloS One, 2014, vol. 9, no. 3, art. e92453. https://doi.org/10.1371/journal.pone.0092453

  210. Kádár, F. and Szentkirályi, F., Effects of climatic variations on long-term fluctuation patterns of ground beetles (Coleoptera, Carabidae) collected by light trapping in Hungary, Acta Phytopathol. Entomol. Hung., 1997, vol. 32, no. 1, p. 185.

    Google Scholar 

  211. Kalinová, B., Minaf, A., and Kotěra, L., Sex pheromone characterisation and field trapping of the European corn borer, Ostrinia nubilalis (Lepidoptera: Pyralidae), in South Moravia and Slovakia, Eur. J. Entomol., 1994, vol. 91, no. 2, p. 197.

  212. Kammar, V., Rani, A.T., Kumar, K.P., and Chakravarthy, A.K., Light trap: a dynamic tool for data analysis, documenting, and monitoring insect populations and diversity, in Innovative Pest Management Approaches for the 21st Century, Chakravarthy, A., Ed., Singapore: Springer, 2020, p. 137. https://doi.org/10.1007/978-981-15-0794-6_8

  213. Kantsa, A., Raguso, R.A., Dyer, A.G., Sgardelis, S.P., Ole-sen, J.M., and Petanidou, T., Community-wide integration of floral colour and scent in a Mediterranean scrubland, Nat. Ecol. Evol., 2017, vol. 1, p. 1502. https://doi.org/10.1038/s41559-017-0298-0

    Article  Google Scholar 

  214. Karlson, P. and Lüscher, M., ‘Pheromones’: a new term for a class of biologically active substances, Nature, 1959, vol. 183, no. 4653, p. 55. https://doi.org/10.1038/183055a0

    Article  CAS  Google Scholar 

  215. Karmakar, A., Mitra, S., and Barik, A., Systemically released volatiles from Solena amplexicaulis plant leaves with color cues influencing attraction of a generalist insect herbivore, Int. J. Pest Manage., 2018, vol. 64, no. 3, p. 210. https://doi.org/10.1080/09670874.2017.1383531

  216. Kárpáti, Z., Fejes-Tóth, A., Csengele, B., Szőke, C., Bónis, P., Marton, L.C., and Molnár, B.P., Pheromone-based monitoring of the European corn borer (Ostrinia nubilalis) in Hungary, Maydica, 2016, vol. 61, no. 2, p. 1.

  217. Kato, M., Inoue, T., Hamid, A.A., Nagamitsu, T., Merdek, M., Nona, A.R., Itino, T., Yamane, S., and Yumoto, T., Seasonality and vertical structure of light‐attracted insect communities in a dipterocarp forest in Sarawak, Popul. Ecol., 1995, vol. 37, no. 1, p. 59. https://doi.org/10.1007/BF02515762

    Article  Google Scholar 

  218. Kehat, M., Gothilf, S., Dunkelblum, E., and Greenberg, S., Sex pheromone traps as a means of improving control programs for the cotton bollworm, Heliothis armigera (Lepidoptera: Noctuidae), Environ. Entomol., 1982, vol. 11, no. 3, p. 727. https://doi.org/10.1093/ee/11.3.727

  219. Kehat, M., Anshelevich, L., Dunkelblum, E., Fraishtat, P., and Greenberg, S., Sex pheromone traps for monitoring the codling moth: effect of dispenser type, field aging of dispenser, pheromone dose and type of trap on male captures, Entomol. Exp. Appl., 1994, vol. 70, no. 1, p. 55. https://doi.org/10.1111/j.1570-7458.1994.tb01758.x

    Article  Google Scholar 

  220. Keil, T.A., Morphology and development of the peripheral olfactory organs, in Insect Olfaction, Hansson, B.S., Ed., Berlin; Heidelberg: Springer, 1999, p. 5. https://doi.org/10.1007/978-1-4613-2715-8_13

  221. Kerr, J.L., Kelly, D., Bader, M.K.F., and Brockerhoff, E.G., Olfactory cues, visual cues, and semiochemical diversity interact during host location by invasive forest beetles, J. Chem. Ecol., 2017, vol. 43, no. 1, p. 17. https://doi.org/10.1007/s10886-016-0792-x

    Article  CAS  Google Scholar 

  222. Kessler, A. and Kalske, A., Plant secondary metabolite diversity and species interactions, Annu. Rev. Ecol. Evol. Syst., 2018, vol. 49, p. 115. https://doi.org/10.1146/annurev-ecolsys-110617-062406

    Article  Google Scholar 

  223. Keszthelyi, S. and Lengyel, Z., Flight of the European corn borer (Ostrinia nubilalis Hbn.) as followed by light- and pheromone traps in Várda and Balatonmagyaród 2002, J. Central Eur. Agric., 2003, vol. 4, no. 1, p. 55.

  224. Kevan, P.G. and Baker, H.G., Insects as flower visitors and pollinators, Annu. Rev. Entomol., 1983, vol. 28, p. 407. https://doi.org/10.1146/annurev.en.28.010183.002203

    Article  Google Scholar 

  225. Khan, Z.R. and Pickett, J.A., Push-pull strategy for insect pest management, in Encyclopedia of Entomology, 2nd Edition, Capinera, J.L., Ed., Berlin; Heidelberg: Springer Science & Business Media, 2008, p. 3074.

  226. Kim, K.N., Huang, Q.Y., and Lei, C.L., Advances in insect phototaxis and application to pest management: a review, Pest Manage. Sci., 2019, vol. 75, no. 12, p. 3135. https://doi.org/10.1002/ps.5536

    Article  CAS  Google Scholar 

  227. Kimondiu, J.M., Kumar, A.R.V., and Ganeshaiah, K.N., Insects from light trap: do they represent total diversity? Int. J. Env. Agric. Biotechnol., 2019, vol. 4, no. 5, p. 1573. https://doi.org/10.22161/IJEAB.45.44

    Article  Google Scholar 

  228. Kirkpatrick, R.L., Yancey, D.L., and Marzke, F.O., Effectiveness of green and ultraviolet light in attracting stored-product insects to traps, J. Econ. Entomol., 1970, vol. 63, no. 6, p. 1853. https://doi.org/10.1093/jee/63.6.1853

    Article  Google Scholar 

  229. Klowden, M.J., Physiological Systems in Insects. 3rd Edition, London; San Diego: Academic Press, 2013.

  230. Knudsen, J.T., Eriksson, R., Gershenzon, J., and Ståhl, B., Diversity and distribution of floral scent, Bot. Rev., 2006, vol. 72, no. 1, p. 1. https://doi.org/10.1663/0006-8101(2006)72[1:DADOFS]

    Article  Google Scholar 

  231. Komonen, A., Halme, P., and Kotiaho, J.S., Alarmist by bad design: strongly popularized unsubstantiated claims undermine credibility of conservation science, Rethinking Ecology, 2019, vol. 4, p. 17. https://doi.org/10.3897/rethinkingecology.4.34440

    Article  Google Scholar 

  232. Kondo, A., Tanaka, F., Sugie, H., and Hokyou, N., Analysis of some biological factors affecting differential pheromone trap efficiency between generations in the rice stem borer moth, Chilo suppressalis (Walker) (Lepidoptera: Pyralidae), Appl. Entomol. Zool., 1993, vol. 28, no. 4, p. 503. https://doi.org/10.1303/aez.28.503

  233. Kondratyeva, N.P. and Buzmakov, D.V., Rationale for the use of electric light technology for capturing insects, Agrotekh. Energ., 2018, vol. 3, no. 20, p. 47.

    Google Scholar 

  234. Koul, O. and Cuperus, G.W., Eds., Ecologically-Based Integrated Pest Management, Oxfordshire etc.: CABI, 2007.

  235. Kovalenkov, V.G., Ismailov, V.Ya., and Tyurina, N.M., Pheromones in integrated plant protection systems, Zashch. Karantin Rast., 2000, no. 8, p. 12.

    Google Scholar 

  236. Kravchenko, V.D., On a futile survey method, Zashch. Rast., 1991, no. 8, p. 13.

    Google Scholar 

  237. Kremneva, O.Yu., Sadkovsky, V.T., Sokolov, Yu.G., Ismai- lov, V.Ya., and Danilov, P.Yu., Estimation of efficiency of insect traps of various designs for phytosanitary monitoring, Grain Econ. Russ., 2019, no. 1, p. 52. https://doi.org/10.31367/2079-8725-2019-61-1-52-55

    Article  Google Scholar 

  238. Kröcher, C. and von and Röhrig, M., Monitoring of plant pests and diseases as a base of the Germany-wide online decision support system ISIP, J. Verbrauch. Lebensmitt., 2007, vol. 2, no. 1, p. 50.

    Article  Google Scholar 

  239. Kulakova, N.I., Rastegaeva, V.M., Todorov, N.G., and Sinitsyna, E.V., Efficiency of tomato leafminer control on greenhouse crops by the disorientation method, Agr. Nauch. Zh., 2022, no. 5, p. 31. https://doi.org/10.28983/asj.y2022i5pp31-36

    Article  Google Scholar 

  240. Kumar, S., Singh, V.K., Nath, P., and Joshi, P.C., An overview of anthropogenic electromagnetic radiations as risk to pollinators and pollination, J. Appl. Nat. Sci., 2020, vol. 12, no. 4, p. 675. https://doi.org/10.31018/jans.v12i4.2420

    Article  Google Scholar 

  241. Kunze, J. and Gumbert, A., The combined effect of color and odor on flower choice behavior of bumble bees in flower mimicry systems, Behav. Ecol., 2001, vol. 12, no. 4, p. 447. https://doi.org/10.1093/beheco/12.4.447

    Article  Google Scholar 

  242. Labhart, T. and Meyer, E.P., Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye, Microsc. Res. Techn., 1999, vol. 47, no. 6, p. 368. https://doi.org/10.1002/(SICI)1097-0029(19991215)

    Article  CAS  Google Scholar 

  243. Laissue, P.P. and Vosshall, L.B., The olfactory sensory map in Drosophila, in Brain Development in Drosophila melanogaster, Technau, G.M., Ed., (Advances in Experimental Medicine and Biology, Vol. 628), New York: Springer, 2008, p. 102. https://doi.org/10.1007/978-0-387-78261-4_7

  244. Lance, D.R., Leonard, D.S., Mastro, V.C., and Walters, M.L., Mating disruption as a suppression tactic in programs targeting regulated lepidopteran pests in US, J. Chem. Ecol., 2016, vol. 42, no. 7, p. 590. https://doi.org/10.1007/s10886-016-0732-9

    Article  CAS  Google Scholar 

  245. Land, M.F., Visual acuity in insects, Annu. Rev. Entomol., 1997, vol. 42, p. 147. https://doi.org/10.1146/annurev.ento.42.1.147

    Article  CAS  Google Scholar 

  246. Landolt, P.J., Guedot, C., and Zack, R.S., Spotted cutworm, Xestia c‐nigrum (L.) (Lepidoptera: Noctuidae) responses to sex pheromone and blacklight, J. Appl. Entomol., 2011, vol. 135, no. 8, p. 593. https://doi.org/10.1111/j.1439-0418.2010.01571.x

  247. Langevelde, F., van, Ettema, J.A., Donners, M., Wallis DeVries, M.F., and Groenendijk, D., Effect of spectral composition of artificial light on the attraction of moths, Biol. Conserv., 2011, vol. 144, p. 2274. https://doi.org/10.1016/j.biocon.2011.06.004

    Article  Google Scholar 

  248. Laothawornkitkul, J., Taylor, J.E., Paul, N.D., and Hewitt, C., Biogenic volatile organic compounds in the Earth system, New Phytol., 2009, vol. 183, no. 1, p. 27. https://doi.org/10.1111/j.1469-8137.2009.02859.x

    Article  CAS  Google Scholar 

  249. Larraín, S.P., Guillon, M., Kalazich, J., Graña, F., and Vásquez, C., Effect of pheromone trap density on mass trapping of male potato tuber moth Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae), and level of damage on potato tubers, Chil. J. Agric. Res., 2009, vol. 69, no. 2, p. 281. https://doi.org/10.4067/S0718-58392009000200018

  250. Latash, M.L., Synergy, Oxford; New York: Oxford University Press, 2008.

  251. Laussmann, T., Dahl, A., and Radtke, A., Lost and found: 160 years of Lepidoptera observations in Wuppertal (Germany), J. Insect Conserv., 2021, vol. 25, no. 2, p. 273. https://doi.org/10.1007/s10841-021-00296-w

    Article  Google Scholar 

  252. Leal, W.S., Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes, Annu. Rev. Entomol., 2013, vol. 58, p. 373. https://doi.org/10.1146/annurev-ento-120811-153635

    Article  CAS  Google Scholar 

  253. Leather, S.R., “Ecological Armageddon” – more evidence for the drastic decline in insect numbers, Ann. Appl. Biol., 2017, vol. 172, no. 1, p. 1. https://doi.org/10.1111/aab.12410

    Article  Google Scholar 

  254. Lebedeva, K.V., Vendilo, N.V., and Pletnev, V.A., Pheromones of insect pests, Zashch. Karantin Rast., 2006, no. 4, p. 40.

    Google Scholar 

  255. Lebedeva, K.V., Vendilo, N.V., and Pletnev, V.A., Pheromones of forest insects and their application in forest pest control, Agrokhimiya, 2012, no. 8, p. 77.

    Google Scholar 

  256. Lebedeva, K.V., Vendilo, N.V., and Pletnev, V.A., Pheromones of tortrix moths and their use in plant protection, Agrokhimiya, 2016, no. 2, p. 80.

    Google Scholar 

  257. Leinonen, R., Pöyry, J., Söderman, G., and Tuominen-Roto, L., Suomen Yöperhosseuranta (Nocturna) 1993–2012, Helsinki: Suomen Ympäristökeskuksen Raportteja 15, 2016. https://helda.helsinki.fi/bitstream/handle/10138/161221/SYKEra_15_2016.pdf

  258. Leonard, A.S. and Masek, P., Multisensory integration of colors and scents: insights from bees and flowers, J. Comp. Physiol. A, 2014, vol. 200, no. 6, p. 463. https://doi.org/10.1007/s00359-014-0904-4

    Article  CAS  Google Scholar 

  259. Leonard, A.S., Dornhaus, A., and Papaj, D.R., Flowers help bees cope with uncertainty: signal detection and the function of floral complexity, J. Exp. Biol., 2011, vol. 214, no. 1, p. 113. https://doi.org/10.1242/jeb.047407

    Article  Google Scholar 

  260. Levitin, M.M., Microorganisms in the context of global climate change, Selskokhoz. Biol., 2015, vol. 50, no. 5, p. 641. https://doi.org/10.15389/agrobiology.2015.5.641rus

    Article  Google Scholar 

  261. Levitt, B.B., Lai, H.C., and Manville, A.M., Effects of non-ionizing electromagnetic fields on flora and fauna, part 1. Rising ambient EMF levels in the environment, Rev. Env. Health, 2022, vol. 37, no. 1, p. 81. https://doi.org/10.1515/reveh-2021-0026

    Article  Google Scholar 

  262. Lin, H.H., Lai, J.S.., Chin, A.L., Chen, Y.C., and Chiang, A.S., A map of olfactory representation in the Drosophila mushroom body, Cell, 2007, vol. 128, no. 6, p. 1205. https://doi.org/10.1016/j.cell.2007.03.006

  263. Linn, C.E. and Roelofs, W.L., Response specificity of male moths to multicomponent pheromones, Chem. Senses, 1989, vol. 14, no. 3, p. 421. https://doi.org/10.1093/chemse/14.3.421

    Article  CAS  Google Scholar 

  264. Lister, B.C. and Garcia, A., Climate-driven declines in arthropod abundance restructure a rainforest food web, Proc. Natl. Acad. Sci., 2018, vol. 115, no. 44, p. E10397. https://doi.org/10.1073/pnas.1722477115

  265. Liu, Y., Liu, C., Zhang, J.C., and Zhao, S.Y., Discussion on applicability of the technology of using light to trap in the field of pests and diseases control in tea plantation of China, Key Eng. Mater., 2013, vol. 575, p. 487. https://doi.org/10.4028/www.scientific.net/kem.575-576.487

    Article  Google Scholar 

  266. Loganathan, M. and Uthamasamy, S., Efficacy of a sex pheromone formulation for monitoring Heliothis armigera Hübner moths on cotton, J. Entomol. Res., 1998, vol. 22, no. 1, p. 35.

  267. Ludwig, W., Seitenstetigkeit niederer Tiere im Ein- und Zweilichtversuche. I. Limantria dispar-Raupen, Z. Wiss. Zool., 1933, vol. 144, no. 4, p. 469.

  268. Luo, L., Huang, S., Jiang, X., and Zhang, L., Characteristics and causes for the outbreaks of beet webworm, Loxostege sticticalis in northern China during 2008, Plant Prot., 2009, vol. 35, no. 1, p. 27.

  269. Lupi, D., Mesiano, M.P., Adani, A., Benocci, R., Giacchini, R., Parenti, P., Zambon, G., Lavazza, A., Boniotti, M.B., Bassi, S., Colombo, M., and Tremolada, P., Combined effects of pesticides and electromagnetic-fields on honeybees: multi-stress exposure, Insects, 2021, vol. 12, no. 8, p. 716. https://doi.org/10.3390/insects12080716

    Article  Google Scholar 

  270. Lyu, F., Hai, X., Wang, Z., Yan, A., Liu, B., and Bi, Y., Integration of visual and olfactory cues in host plant identification by the Asian longhorned beetle, Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae), PloS One, 2015, vol. 10, no. 11, art. e0142752. https://doi.org/10.1371/journal.pone.0142752

  271. Madsen, H.F. and Carty, B.E., Codling moth (Lepidoptera: Olethreutidae): suppression by male removal with sex pheromone traps in three British Columbia orchards, Can. Entomol., 1979, vol. 111, no. 5, p. 627. https://doi.org/10.4039/Ent111627-5

    Article  Google Scholar 

  272. Maelzer, D.A. and Zalucki, M.P., Analysis of long-term light-trap data for Helicoverpa spp. (Lepidoptera: Noctuidae) in Australia: the effect of climate and crop host plants, Bull. Entomol. Res., 1999, vol. 89, no. 5, p. 455. https://doi.org/10.1017/S0007485399000590

  273. Maelzer, D., Zalucki, M.P., and Laughlin, R., Analysis and interpretation of long term light trap data for Helicoverpa punctigera (Lepidoptera; Noctuidae) in Australia: population changes and forecasting pest pressure, Bull. Entomol. Res., 1996, vol. 86, no. 5, p. 547. https://doi.org/10.1017/S0007485300039341

  274. Magomedov, U.Sh., Kuzin, A.A., Kovalev, B.G., Atanov, N.M., and Kuzina, N.P., Pheromone application: status and trends, Zashch. Karantin Rast., 2009, no. 11, p. 36.

    Google Scholar 

  275. Mahroof, R.M. and Phillips, T.W., Responses of stored‐product Anobiidae to pheromone lures and plant‐derived volatiles, J. Appl. Entomol., 2008, vol. 132, no. 2, p. 161. https://doi.org/10.1111/j.1439-0418.2007.01251.x

    Article  Google Scholar 

  276. Maini, S. and Burgio, G., Influence of trap design and phenylacetaldehyde upon field capture of male and female Ostrinia nubilalis (Hb.) (Lepidoptera, Pyralidae) and other moths, Boll. Ist. Entomol. Guido Grandi Univ. Studi Bologna, 1990, vol. 45, p. 157.

  277. Maini, S. and Burgio, G., Relationship between infestation and capture of adults of Ostrinia nubilalis (Hb.) in traps baited with sex pheromones and phenylacetaldehyde in pepper grown in tunnels, Boll. Ist. Entomol. Guido Grandi Univ. Studi Bologna, 1994, vol. 48, p. 101.

  278. Maini, S. and Burgio, G., Ostrinia nubilalis (Hb.) (Lep., Pyralidae) on sweet corn: relationship between adults caught in multibaited traps and ear damages, J. Appl. Entomol., 1999, vol. 123, no. 3, p. 179. https://doi.org/10.1046/j.1439-0418.1999.00331.x

  279. Mason, K.S. and Isaacs, R., Juice grape canopy structure and cluster availability do not reduce middle-and late-season captures of male Paralobesia viteana (Lepidoptera: Totricidae) in sex pheromone traps, Env. Entomol., 2018, vol. 47, no. 3, p. 707. https://doi.org/10.1093/ee/nvy044

  280. Matalin, A.V., On the use of light traps in ecological studies of ground beetles (Coleoptera, Carabidae), Zool. Zh., 1996, vol. 75, no. 5, p. 744.

    Google Scholar 

  281. Mazokhin-Porshnyakov, G.A., Mass attraction of insects to ultraviolet radiation, Dokl. Akad. Nauk SSSR, 1955, vol. 102, no. 4, p. 729.

    Google Scholar 

  282. Mazokhin-Porshnyakov, G.A., Comparative attractive effect of light of different spectral composition on insects, Entomol. Obozr., 1956, vol. 35, no. 4, p. 752.

    Google Scholar 

  283. Mazokhin-Porshnyakov, G.A., Why do insects fly to the light, Entomol. Obozr., 1960, vol. 39, no. 1, p. 52.

    Google Scholar 

  284. Mazokhin-Porshnyakov, G.A., Astronomical orientation in arthropods, Entomol. Obozr., 1961, vol. 40, no. 4, p. 724.

    Google Scholar 

  285. Mazokhin-Porshnyakov, G.A., Zrenie nasekomykh (Insect Vision), Moscow: Nauka, 1965.

  286. Mazzi, D. and Dorn, S., Movement of insect pests in agricultural landscapes, Ann. Appl. Biol., 2012, vol. 160, no. 2, p. 97. https://doi.org/10.1111/j.1744-7348.2012.00533.x

    Article  Google Scholar 

  287. Mazzoni, V. and Anfora, G., Behavioral manipulation for pest control, Insects, 2021, vol. 12, no. 4, art. 287. https://doi.org/10.3390/insects12040287

  288. McGeachie, W.J., The effects of moonlight illuminance, temperature and wind speed on light-trap catches of moths, Bull. Entomol. Res., 1989, vol. 79, no. 2, p. 185. https://doi.org/10.1017/S0007485300018162

    Article  Google Scholar 

  289. McMeniman, C.J., Corfas, R.A., Matthews, B.J., Ritchie, S.A., and Vosshall, L.B., Multimodal integration of carbon dioxide and other sensory cues drives mosquito attraction to humans, Cell, 2014, vol. 156, no. 5, p. 1060. https://doi.org/10.1016/j.cell.2013.12.044

    Article  CAS  Google Scholar 

  290. McQuate, G.T., Green light synergistally enhances male sweetpotato weevil response to sex pheromone, Sci. Rep., 2014, vol. 4, art. 4499. https://doi.org/10.1038/srep04499

  291. Melero, Y., Stefanescu, C., and Pino, J., General declines in Mediterranean butterflies over the last two decades are modulated by species traits, Biol. Conserv., 2016, vol. 201, p. 336. https://doi.org/10.1016/j.biocon.2016.07.029

    Article  Google Scholar 

  292. Menzel, R., The honeybee as a model for understanding the basis of cognition, Nat. Rev. Neurosci., 2012, vol. 13, no. 11, p. 758. https://doi.org/10.1038/nrn3357

    Article  CAS  Google Scholar 

  293. Metcalf, R.L. and Kogan, M., Plant volatiles as insect attractants, Crit. Rev. Plant Sci., 1987, vol. 5, no. 3, p. 251. https://doi.org/10.1080/07352688709382242

    Article  CAS  Google Scholar 

  294. Meyer-Rochow, V.B., Eyes and vision of the bumblebee: a brief review on how bumblebees detect and perceive flowers, J. Apicult., 2019, vol. 34, no. 2, p. 107. https://doi.org/10.17519/apiculture.2019.06.34.2.10

    Article  Google Scholar 

  295. Mikkola, K., Behavioural and electrophysiological responses of night-flying insects, especially Lepidoptera, to near-ultraviolet and visible light, Ann. Zool. Fenn., 1972, vol. 9, no. 4, p. 225.

    Google Scholar 

  296. Miller, J.R. and Gut, L.J., Mating disruption for the 21st century: matching technology with mechanism, Environ. Entomol., 2015, vol. 44, no. 3, p. 427. https://doi.org/10.1093/ee/nvv052

    Article  CAS  Google Scholar 

  297. Miller, J.R., Gut, L.J., de Lame, F.M., and Stelinski, L.L., Differentiation of competitive vs. non-competitive mechanisms mediating disruption of moth sexual communication by point sources of sex pheromone (Part 1): Theory, J. Chem. Ecol., 2006a, vol. 32, no. 10, p. 2089. https://doi.org/10.1007/s10886-006-9134-8

    Article  CAS  Google Scholar 

  298. Miller, J.R., Gut, L.J., de Lame, F.M., and Stelinski, L.L., Differentiation of competitive vs. non-competitive mechanisms mediating disruption of moth sexual communication by point sources of sex pheromone (Part 2): Case studies, J. Chem. Ecol., 2006b, vol. 32, no. 10, p. 2115. https://doi.org/10.1007/s10886-006-9136-6

    Article  CAS  Google Scholar 

  299. Miluch, C.E., Dosdall, L.M., and Evenden, M.L., The potential for pheromone-based monitoring to predict larval populations of diamondback moth, Plutella xylostella (L.), in canola (Brassica napus L.), Crop Prot., 2013, vol. 45, p. 89. https://doi.org/10.1016/j.cropro.2012.11.023

  300. Mishra, A., Sharma, P., Gupta, A.K., Fatima, P., and Kumar, P., Control of insect pest through biomolecules and traps, in Biofertilizers and Biopesticides in Sustainable Agriculture, Kaushik, B.D., Kumar, D., and Shamim, M., Eds., Oakville: Apple Academic Press, 2019, p. 91.

  301. Missa, O., Basset, Y., Alonso, A., Miller, S.E., Curletti, G., De Meyer, M., Eardley, C., Mansell, M.W., and Wagner, T., Monitoring arthropods in a tropical landscape: relative effects of sampling methods and habitat types on trap catches, J. Insect Conserv., 2009, vol. 13, no. 1, p. 103. https://doi.org/10.1007/s10841-007-9130-5

    Article  Google Scholar 

  302. Mitchell, E., Management of insect pests with semiochemicals: concepts and practice, in Proceedings of an International Colloquium on Management of Insect Pests with Semiochemicals, March 23–28, 1980. Gainesville, Florida, USA, New York: Plenum Press, 1981.

  303. Mitchell, E.R., Agee, H.R., and Heath, R.R., Influence of pheromone trap color and design on capture of male velvetbean caterpillar and fall armyworm moths (Lepidoptera: Noctuidae), J. Chem. Ecol., 1989, vol. 15, no. 6, p. 1775. https://doi.org/10.1007/BF01012265

    Article  CAS  Google Scholar 

  304. Miyatake, T., Yokoi, T., Fuchikawa, T., Korehisa, N., Kamura, T., Nanba, K., Ryouji, S., Kamioka, N., Hironaka, M., Osada, M., Hariyama, T., Sasaki, R., and Shinoda, K., Monitoring and detecting the cigarette beetle (Coleoptera: Anobiidae) using ultraviolet (LED) direct and reflected lights and/or pheromone traps in a laboratory and a storehouse, J. Econ. Entomol., 2016, vol. 109, no. 6, p. 2551. https://doi.org/10.1093/jee/tow225

    Article  CAS  Google Scholar 

  305. Mizell, R.F., Martin, F.G., and Tedders, W.L., Behavioral response by Hylobius pales, Pachylobius picivorus (Coleoptera: Curculionidae) and Xylotrechus sagittatus (Coleoptera: Cerambycidae) to trap visual and olfactory cues and an estimate of trap efficiency, J. Entomol. Sci., 2007, vol. 42, no. 4, p. 558. https://doi.org/10.18474/0749-8004-42.4.558

  306. Mkiga, A.M., Mohamed, S.A., du Plessis, H., Khamis, F.M., Akutse, K.S., Nderitu, P.W., Niassy, S., Muriithi, B.W., and Ekesi, S., Compatibility and efficacy of Metarhizium anisopliae and sex pheromone for controlling Thaumatotibia leucotreta, J. Pest Sci., 2021, vol. 94, no. 2, p. 393. https://doi.org/10.1007/s10340-020-01281-z

  307. Mochizuki, F., Fukumoto, T., Noguchi, H., Sugie, H., Morimoto, T., and Ohtani, K., Resistance to a mating disruptant composed of (Z)-11-tetradecenyl acetate in the smaller tea tortrix, Adoxophyes honmai (Yasuda) (Lepidoptera: Tortricidae), Appl. Entomol. Zool., 2002, vol. 37, p. 299. https://doi.org/10.1303/aez.2002.299

  308. Mochizuki, F., Noguchi, H., Sugie, H., Tabata, J., and Kainoh, Y., Sex pheromone communication from a population resistant to mating disruptant of the smaller tea tortrix, Adoxophyes honmai Yasuda (Lepidoptera: Tortricidae), Appl. Entomol. Zool., 2008, vol. 43, no. 2, p. 293. https://doi.org/10.1303/aez.2008.293

  309. Molnár, B., Tóth, Z., Fejes-Tóth, A., Dekker, T., and Kárpáti, Z., Electrophysiologically-active maize volatiles attract gravid female European corn borer, Ostrinia nubilalis, J. Chem. Ecol., 2015, vol. 41, no. 11, p. 997. https://doi.org/10.1007/s10886-015-0640-4

  310. Monbiot, G., Insectageddon: farming is more catastrophic than climate breakdown, The Guardian, 20.10.2017. https://www.theguardian.com/commentisfree/2017/oct/20/insectageddon-farming-catastrophe-climate-breakdown-insect-populations

  311. Montagné, N., De Fouchier, A., Newcomb, R.D., and Jacquin- Joly, E., Advances in the identification and characterization of olfactory receptors in insects, Progr. Molec. Biol. Transl. Sci., 2015, vol. 130, p. 55. https://doi.org/10.1016/bs.pmbts.2014.11.003

    Article  CAS  Google Scholar 

  312. Montgomery, G.A., Dunn, R.R., Fox, R., Jongejans, E., Leather, S.R., Saunders, M.E., Shortall, C.R., Tingley, M.W., and Wagner, D.L., Is the insect apocalypse upon us? How to find out, Biol. Conserv., 2020, vol. 241, art. 108327. https://doi.org/10.1016/j.biocon.2019.108327

  313. Morse, R.A. and Hooper, T., Eds., The Illustrated Encyclopedia of Beekeeping, New York: E.P. Dutton, 1985.

  314. Muirhead-Thomson, R.C., Trap Responses of Flying Insects: the Influence of Trap Design on Capture Efficiency, London: Academic Press, 1991.

  315. Murali-Baskaran, R.K., Sharma, K.C., Kaushal, P., Kumar, J., Parthiban, P., Senthil-Natha, S., and Mankin, R.W., Role of kairomone in biological control of crop pests – a review, Physiol. Molec. Plant Pathol., 2018, vol. 101, p. 3. https://doi.org/10.1016/j.pmpp.2017.07.004

    Article  CAS  Google Scholar 

  316. Murtaza, G., Ramzan, M., Ghani, M.U., Munawar, N., Majeed, M., Perveen, A., and Umar, K., Effectiveness of different traps for monitoring sucking and chewing insect pests of crops, Egypt. Acad. J. Biol. Sci. A Entomol., 2019, vol. 12, no. 6, p. 15. https://doi.org/10.21608/eajbsa.2019.58298

    Article  Google Scholar 

  317. Nightingale, W.H., Insect traps. Patent of invention No GB2052942A, 07.04.1983. Application No GB7925176A filled 19.07.1979. Status expired, 1983.

  318. Nofemela, R.S., The ability of synthetic sex pheromone traps to forecast Plutella xylostella infestations depends on survival of immature stages, Entomol. Exp. Appl., 2010, vol. 136, no. 3, p. 281. https://doi.org/10.1111/j.1570-7458.2010.01029.x

  319. Noskov, A., Bendix, J., and Friess, N., A review of insect monitoring approaches with special reference to radar techniques, Sensors, 2021, vol. 21, no. 4, art. 1474. https://doi.org/10.3390/s21041474

  320. Nowinszky, L., The orientation of insects by light – major theories, in The Handbook of Light Trapping, Nowinszky, L., Ed., Szombathely: Savaria University Press, 2003, p. 15.

  321. Nowinszky, L. and Puskás, J., Sex ratio analysis of some Macrolepidoptera species collected by Hungarian forestry light traps, Acta Silv. Lign. Hung., 2015, vol. 11, no. 2, p. 99. https://doi.org/10.1515/aslh-2015-0008

    Article  Google Scholar 

  322. Nyambo, B.T., A comparative assessment of pheromone and light traps as tools for monitoring Heliothis armigera in Tanzania, Int. J. Pest Manage., 1988, vol. 34, no. 4, p. 448. https://doi.org/10.1080/09670878809371300

  323. Nyambo, B.T., Assessment of pheromone traps for monitoring and early warning of Heliothis armigera Hübner (Lepidoptera, Noctuidae) in the western cotton-growing areas of Tanzania, Crop Prot., 1989, vol. 8, no. 3, p. 188. https://doi.org/10.1016/0261-2194(89)90025-2

  324. Oerke, E.C., Dehne, H.W., Schonbeck, F., and Weber, A., Crop Production and Crop Protection: Estimated Losses in Major Food and Cash Crops, Amsterdam: Elsevier, 1994.

  325. Oh, M.S., Lee, C.H., Lee, S.G., and Lee, H.S., Evaluation of high power light emitting diodes (HPLEDs) as potential attractants for adult Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), J. Korean Soc. Appl. Biol. Chem., 2011, vol. 54, no. 3, p. 416. https://doi.org/10.3839/jksabc.2011.065

  326. Oh, S.M., Jeong, K., Seo, J.T., and Moon, S.J., Multisensory interactions regulate feeding behavior in Drosophila, Proc. Natl. Acad. Sci., 2021, vol. 118, no. 7, art. e2004523118. https://doi.org/10.1073/pnas.2004523118

  327. Ômura, H., Plant secondary metabolites in host selection of butterfly, in Chemical Ecology of Insects, Tabata, J., Ed., Boca Raton: CRC Press, 2018, p. 3.

  328. Östrand, F., Elek, J.A., and Steinbauer, M.J., Monitoring autumn gum moth (Mnesampela privata): relationships between pheromone and light trap catches and oviposition in eucalypt plantations, Aust. For., 2007, vol. 70, no. 3, p. 185. https://doi.org/10.1080/00049158.2007.10675019

  329. Ostroumov, S.A., Vvedenie v biokhimicheskuyu ekologiyu (Introduction to Biochemical Ecology), Moscow: Mosk. Gos. Univ., 1986.

  330. Otálora-Luna, F., Lapointe, S.L., and Dickens, J.C., Olfactory cues are subordinate to visual stimuli in a neotropical generalist weevil, PloS One, 2013, vol. 8, no. 1, art. e53120. https://doi.org/10.1371/journal.pone.0053120

  331. Otieno, J.A., Stukenberg, N., Weller, J., and Poehling, H.M., Efficacy of LED-enhanced blue sticky traps combined with the synthetic lure Lurem-TR for trapping of western flower thrips (Frankliniella occidentalis), J. Pest Sci., 2018, vol. 91, no. 4, p. 1301. https://doi.org/10.1007/s10340-018-1005-x

  332. Ovsyannikova, E.I., Grichanov, I.Ya., Kremneva, O.Yu., and Pachkin, A.A., Approbation of LED traps in conditions of the Northwest of the Russian Federation, Zashch. Karantin Rast., 2020, no. 7, p. 29. https://doi.org/10.5281/ZENODO.3590503

    Article  Google Scholar 

  333. Owens, A.C.S. and Lewis, S.M., The impact of artificial light at night on nocturnal insects: a review and synthesis, Ecol. Evol., 2018, vol. 8, no. 22, p. 11337. https://doi.org/10.1002/ece3.4557

    Article  Google Scholar 

  334. Pachkin, A.A., Kremneva, O.Yu., and Ivanisova, M.V., Testing a light trap for insects with a separating collector on sunflowers, in Sostoyanie i perspektivy razvitiya agropromyshlennogo kompleksa. Yubileinyi sbornik nauchnykh trudov XIII mezhdunarodnoi nauchno-prakticheskoi konferentsii, posvyashchennoi 90-letiyu Donskogo gosudarstvennogo tekhnicheskogo universiteta (State and Prospects of Agroindustrial Development: Proc. of the 13th Int. Conf. Dedicated to the 90th Anniversary of the Don State Technical University), Vol. 1, Lachuga, Yu.F., etc., Eds., Rostov-on-Don: DGTU-Print, 2020, p. 215. https://doi.org/10.23947/interagro.2020.1.215-218

  335. Pal, S., Chatterjee, H., and Senapati, S.K., Monitoring of Helicoverpa armigera using pheromone traps and relationship of moth activity with larval infestation on carnation (Dianthus caryophyllus) in Darjeeling Hills, J. Entomol. Res., 2014, vol. 38, no. 1, p. 23.

  336. Pan, H., Xiu, C., and Lu, Y., A combination of olfactory and visual cues enhance the behavioral responses of Apolygus lucorum, J. Insect Behav., 2015, vol. 28, no. 5, p. 525. https://doi.org/10.1007/s10905-015-9521-5

  337. Pan, H., Xu, Y., Liang, G., Wyckhuys, K.A., Yang, Y., and Lu, Y., Field evaluation of light-emitting diodes to trap the cotton bollworm, Helicoverpa armigera, Crop Prot., 2020, vol. 137, art. 105267. https://doi.org/10.1016/j.cropro.2020.105267

  338. Papadopoulou, S.C. and Buchelos, C.T., Comparison of trapping efficacy for Lasioderma serricorne (F.) adults with electric, pheromone, food attractant and control-adhesive traps, J. Stored Prod. Res., 2002, vol. 38, no. 4, p. 375. https://doi.org/10.1016/S0022-474X(01)00039-X

  339. Park, I., Eigenbrode, S.D., Cook, S.P., Harmon, B.L., Hinz, H., Schaffner, U., and Schwarzländer, M., Examining olfactory and visual cues governing host-specificity of a weed biological control candidate species to refine pre-release risk assessment, BioControl, 2018, vol. 63, no. 3, p. 377. https://doi.org/10.1007/s10526-018-9867-7

    Article  Google Scholar 

  340. Park, I., Schwarzländer, M., Hinz, H.L., Schaffner, U., and Eigenbrode, S.D., A simple approach to evaluate behavioral responses of insect herbivores to olfactory and visual cues simultaneously: the double stacked y-tube device and portable volatile collection system, Arthropod-Plant Interact., 2019, vol. 13, p. 139. https://doi.org/10.1007/s11829-018-9663-4

    Article  Google Scholar 

  341. Park, J.H. and Lee, H.S., Phototactic behavioral response of agricultural insects and stored-product insects to light-emitting diodes (LEDs), Appl. Biol. Chem., 2017, vol. 60, no. 2, p. 137. https://doi.org/10.1007/s13765-017-0263-2

    Article  CAS  Google Scholar 

  342. Paulk, A.C., Dacks, A.M., Phillips-Portillo, J., Fellous, J.M., and Gronenberg, W., Visual processing in the central bee brain, J. Neurosci., 2009, vol. 29, no. 32, p. 9987. https://doi.org/10.1523/JNEUROSCI.1325-09.2009

    Article  CAS  Google Scholar 

  343. Pavlyushin, V.A., Scientific support for plant protection and food supply security in Russia, Zashch. Karantin Rast., 2010, no. 2, p. 11.

    Google Scholar 

  344. Pavlyushin, V.A., Vilkova, N.A., Sukhoruchenko, G.I., and Fasulati, S.R., Phytosanitary consequences of anthropogenic transformation of agroecosystems, Vestn. Zashch. Rast., 2008, no. 3, p. 3.

    Google Scholar 

  345. Pavlyushin, V.A., Vilkova, N.A., Sukhoruchenko, G.I., Nefedova, L.I., and Fasulati, S.R., Fitosanitarnaya destabilizatsiya agroekosistem (Phytosanitary Destabilization of Agroecosystems), St. Petersburg: Rodnye Prostory, 2013.

  346. Pélozuelo, L. and Frérot, B., Monitoring of European corn borer with pheromone-baited traps: review of trapping system basics and remaining problems, J. Econ. Entomol., 2007, vol. 100, no. 6, p. 1797. https://doi.org/10.1093/jee/100.6.1797

    Article  Google Scholar 

  347. Peshin, R. and Dhawan, A.K., Eds., Integrated Pest Management, Vol. 1: Innovation-Development Process; Vol. 2: Dissemination and Impact, Berlin: Springer Sci. & Business Media, 2009.

  348. Petkevicius, K., Lofstedt, C., and Borodina, I., Insect sex pheromone production in yeasts and plants, Curr. Opin. Biotechnol., 2020, vol. 65, p. 259. https://doi.org/10.1016/j.copbio.2020.07.011

    Article  CAS  Google Scholar 

  349. Pickett, J.A., Wadhams, L.J., and Woodcock, C.M., Exploiting behaviorally active phytochemicals in crop protection, in Van Beek, T.A. and Breteler, H., Eds., Phytochemistry and Agriculture, Oxford: Claredon Press, 1993, p. 62.

  350. Pickett, J.A., Wadhams, L.J., and Woodcock, C.M., Developing sustainable pest control from chemical ecology, Agric. Ecosyst. Environ., 1997, vol. 64, no. 2, p. 149. https://doi.org/10.1016/S0167-8809(97)00033-9

    Article  CAS  Google Scholar 

  351. Popova, E.N. and Popov, I.O., Climatic factors determining the ranges of pests and pathogens of agricultural plants and the calculation methods for assessing range dymanics following climate change, Probl. Ekol. Monit. Model. Ekosist., 2013, vol. 25, p. 175.

    Google Scholar 

  352. Popp, J. and Hantos, K., The impact of crop protection on agricultural production, Stud. Agric. Econ., 2011, vol. 113, no. 1, p. 47. https://doi.org/10.22004/ag.econ.102401

    Article  Google Scholar 

  353. Potting, R.P.J., Perry, J.N., and Powell, W.J.E.M., Insect behavioural ecology and other factors affecting the control efficacy of agro-ecosystem diversification strategies, Ecol. Mod., 2005, vol. 182, no. 2, p. 199. https://doi.org/10.1016/j.ecolmodel.2004.07.017

    Article  Google Scholar 

  354. Prasad, Y. and Prabhakar, M., Pest monitoring and forecasting, in Integrated Pest Management: Principles and Practice, Abrol, D.P. and Shankar, U., Eds., Oxfordshire: CAB International, 2012, p. 41.

  355. Prasannakumar, N.R., Chakravarthy, A.K., and Naveen, A.H., Influence of weather parameters on pheromone trap catches of potato cutworm, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae), Curr. Biotica, 2012, vol. 5, no. 4, p. 508.

  356. Pushnya, M.V., Ismailov, V.Ya., Balakhnina, I.V., Rodionova, E.Yu., Snesareva, E.G., and Komantsev, A.A., Biocontrol of agricultural pests based on autodissemination of entomopathogenic nematodes of the family Steinermatidae (Nematoda: Rhabditida), Selskokhoz. Biol., 2021, vol. 56, no. 3, p. 523. https://doi.org/10.15389/agrobiology.2021.3.523rus

    Article  Google Scholar 

  357. Pyatirikova, Zh., Interesting Facts about the Beijing 2008 Olympics, 2008. https://s30657437700.mirtesen.ru/blog/43903544438/Interesnyie-faktyi-o-Pekinskoy-Olimpiade---2008

  358. Pyatnova, Yu.B., Pheromone-based preparations, Zashch. Karantin Rast., 2007, no. 3, p. 67.

    Google Scholar 

  359. Pyatnova, Yu.B., Kislitsyna, T.I., Voinova, V.N., Karakotov, S.D., Pletnev, V.A., Vendilo, N.V., Lebedeva, K.V., Velcheva, N., and Staneva, E., Testing the oriental fruit moth and the plum fruit moth pheromones for their population control by the disorientation method, Zashch. Karantin Rast., 2013, no. 8, p. 33.

    Google Scholar 

  360. Pyatnova, Yu.B., Lebedeva, K.V., and Karakotov, S.D., The use of insect pheromones for plant protection, Zashch. Karantin Rast., 2016, no. 5, p. 37. https://www.elibrary.ru/item.asp?id=25958562

    Google Scholar 

  361. Raguso, R.A. and Willis, M.A., Synergy between visual and olfactory cues in nectar feeding by naïve hawkmoths, Manduca sexta, Anim. Behav., 2002, vol. 64, no. 5, p. 685. https://doi.org/10.1006/anbe.2002.4010

  362. Raimondo, S., Strazanac, J.S., and Butler, L., Comparison of sampling techniques used in studying Lepidoptera population dynamics, Environ. Entomol., 2004, vol. 33, no. 2, p. 418. https://doi.org/10.1603/0046-225X-33.2.418

    Article  Google Scholar 

  363. Rak Cizej, M. and Persolja, J., The methods of monitoring and management the European corn borer (Ostrinia nubilalis) in Slovenian hop garden, in International Hop Growers’ Convention, Proceedings of the Scientific Commission, Kiev, Ukraine, 04–09 June 2013, 2013, p. 69. https://d-nb.info/1037703790/34#page=69

  364. Rak Cizej, M., Šporar, K., Štefančič, M., Štefančič, M., and Belušic, G., Preizkus LED svetlobne vabe pri spremljanju pojava koruzne vešče (Ostrinia nubilalis Hübner), Hmel. Bilten, 2014, vol. 21, no. 1, p. 17. https://www.dlib.si/stream/URN:NBN:SI:DOC-H14BLULJ/31ab4414-5175-46c6-a31d-0143558c1955/PDF

  365. Ramamurthy, V.V., Akhtar, M.S., Patankar, N.V., Menon, P., Kumar, R., Singh, S.K., Ayri, S., Parveen, S., and Mittal, V., Efficiency of different light sources in light traps in monitoring insect diversity, Munis Entomol. Zool., 2010, vol. 5, no. 1, p. 109.

    Google Scholar 

  366. Ramaswamy, S.B., Cardé, R.T., and Witter, J.A., Relationships between catch in pheromone-baited traps and larval density of the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae), Can. Entomol., 1983, vol. 115, no. 11, p. 1437. https://doi.org/10.4039/Ent1151437-11

  367. Ramsden, M.W., Kendall, S.L., Ellis, S.A., and Berry, P.M., A review of economic thresholds for invertebrate pests in UK arable crops, Crop Prot., 2017, vol. 96, p. 30. https://doi.org/10.1016/j.cropro.2017.01.009

    Article  Google Scholar 

  368. Rawat, R.K., Keval, R., Chakravarty, S., and Ganguly, S., Monitoring of gram pod borer, Helicoverpa armigera (Hübner) through pheromone traps on long duration pigeonpea [Cajanus cajan (L.) Millsp.], J. Entomol. Zool. Stud., 2017, vol. 5, no. 5, p. 665.

  369. Reardon, B.J., Sumerford, D.V., and Sappington, T.W., Impact of trap design, windbreaks, and weather on captures of European corn borer (Lepidoptera: Crambidae) in pheromone-baited traps, J. Econ. Entomol., 2006, vol. 99, no. 6, p. 2002. https://doi.org/10.1093/jee/99.6.2002

    Article  Google Scholar 

  370. Reddy, G.V. and Guerrero, A., Interactions of insect pheromones and plant semiochemicals, Trends Plant Sci., 2004, vol. 9, no. 5, p. 253. https://doi.org/10.1016/j.tplants.2004.03.009

    Article  CAS  Google Scholar 

  371. Reddy, G.V. and Guerrero, A., New pheromones and insect control strategies, Vitam. Horm., 2010, vol. 83, p. 493. https://doi.org/10.1016/S0083-6729(10)83020-1

    Article  CAS  Google Scholar 

  372. Regnier, F.E., Semiochemicals – structure and function, Biol. Reprod., 1971, vol. 4, no. 3, p. 309. https://doi.org/10.1093/biolreprod/4.3.309

    Article  CAS  Google Scholar 

  373. Reinecke, A. and Hilker, M., Plant semiochemicals – perception and behavioural responses by insects, in Annual Plant Reviews, Vol. 47: Insect-Plant Interactions, Voelckel, C. and Jander, G., Eds., Chichester: John Wiley & Sons, 2014, p. 115.

  374. Reisenman, C.E., Lei, H., and Guerenstein, P.G., Neuroethology of olfactory-guided behavior and its potential application in the control of harmful insects, Front. Physiol., 2016, vol. 7, art. 271. https://doi.org/10.3389/fphys.2016.00271

  375. Renou, M. and Guerrero, A., Insect parapheromones in olfaction research and semiochemical-based pest control strategies, Annu. Rev. Entomol., 2000, vol. 48, p. 605. https://doi.org/10.1146/annurev.ento.45.1.605

    Article  Google Scholar 

  376. Rensburg, J.B.J. van, Evaluation of pheromone trapping systems in relation to light trap captures of the maize stalk borer, Busseola fusca (Fuller) (Lepidoptera: Noctuidae), S. Afr. J. Plant Soil, 1992, vol. 9, no. 3, p. 144. https://doi.org/10.1080/02571862.1992.10634618

  377. Renwick, J.A.A. and Chew, F.S., Oviposition behavior in Lepidoptera, Annu. Rev. Entomol., 1994, vol. 39, p. 377. https://doi.org/10.1146/annurev.en.39.010194.002113

    Article  Google Scholar 

  378. Rhainds, M., Therrien, P., and Morneau, L., Pheromone-based monitoring of spruce budworm (Lepidoptera: Tortricidae) larvae in relation to trap position, J. Econ. Entomol., 2015, vol. 109, no. 2, p. 717. https://doi.org/10.1093/jee/tov393

    Article  Google Scholar 

  379. Rhainds, M., Lavigne, D., Rideout, T., and Candau, J.N., Temporal variation in abundance of male and female spruce budworms at combinatory associations of light traps and pheromone traps, Entomol. Exp. Appl., 2019, vol. 167, no. 6, p. 526. https://doi.org/10.1111/eea.12806

    Article  CAS  Google Scholar 

  380. Rhodes, C.J., Are insect species imperilled? Critical factors and prevailing evidence for a potential global loss of the entomofauna: a current commentary, Sci. Progr., 2019, vol. 102, no. 2, p. 181. https://doi.org/10.1177/0036850419854291

    Article  Google Scholar 

  381. Rice, K.B., Cullum, J.P., Wiman, N.G., Hilton, R., and Leskey, T.C., Halyomorpha halys (Hemiptera: Pentatomidae) response to pyramid traps baited with attractive light and pheromonal stimuli, Fla. Entomol., 2017, vol. 100, no. 2, p. 449. https://doi.org/10.1653/024.100.0207

  382. Riley, C.V., Traps for the moths, in Fourth Report of the United States Entomological Commission: Being a Revised Edition of Bulletin No. 3, and the Final Report on the Cotton Worm, U.S. Government Printing Office, 1885, p. 314.

  383. Rizvi, S.A.H., George, J., Reddy, G.V., Zeng, X., and Guerrero, A., Latest developments in insect sex pheromone research and its application in agricultural pest management, Insects, 2021, vol. 12, no. 6, art. 484. https://doi.org/10.3390/insects12060484

  384. Roach, S.H., Heliothis zea and H. virescens: moth activity as measured by blacklight and pheromone traps, J. Econ. Entomol., 1975, vol. 68, no. 1, p. 17. https://doi.org/10.1093/jee/68.1.17

  385. Robinson, H.S. and Robinson, P.J.M., Some notes on the observed behaviour of Lepidoptera in the vicinity of light-sources together with a description of a light-trap designed to take entomological samples, Entomol. Gaz., 1950, vol. 1, p. 3.

    Google Scholar 

  386. Rodriguez-Saona, C.R. and Stelinski, L.L., Behavior-modifying strategies in IPM: theory and practice, in Integrated Pest Management: Innovation-Development Process, Peshin, R. and Dhawan, A.K., Eds., Dordrecht: Springer, 2009, p. 263. https://doi.org/10.1007/978-1-4020-8992-3_11

  387. Roge, G.M., Pheromones as component of integrated pest management, Entomol. Ornithol. Herpetol. Curr. Res., 2021, vol. 10, no. 4, art. 1000244.

  388. Roitberg, B.D., Why pest management needs behavioral ecology and vice versa, Entomol. Res., 2007, vol. 37, no. 1, p. 14. https://doi.org/10.1111/j.1748-5967.2007.00045.x

    Article  Google Scholar 

  389. Romeis, J., Shelton, A.M., Kennedy, G.G., Eds., Integration of Insect-Resistant Genetically Modified Crops within IPM Programs, Dordrecht: Springer Sci. & Business Media, 2008.

  390. Ryabchinskaya, T.A., The European corn borer and methods of its monitoring, Zashch. Karantin Rast., 2016, no. 1, p. 25. https://www.elibrary.ru/item.asp?id=25333164

    Google Scholar 

  391. Ryabchinskaya, T.A. and Frolov, A.N., State of research and prospects for the use of pheromones in field crops, Zashch. Karantin Rast., 2016, no. 8, p. 11. https://www.elibrary.ru/item.asp?id=26454211

    Google Scholar 

  392. Ryabchinskaya, T.A., Kolesova, D.A., Sarantseva, N.A., Kharchenko, G.L., and Bobreshova, I.Yu., The use of synthetic sex pheromones to reduce the population density of lepidopteran pests, Agrokhimiya, 2015, no. 10, p. 75.

    Google Scholar 

  393. Saad, A.D. and Scott, D.R., Repellency of pheromones released by females of Heliothis armigera and H. zea to females of both species, Entomol. Exp. Appl., 1981, vol. 30, no. 2, p. 123. https://doi.org/10.1111/j.1570-7458.1981.tb03085.x

  394. Sambaraju, K.R. and Phillips, T.W., Responses of adult Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) to light and combinations of attractants and light, J. Insect Behav., 2008, vol. 21, no. 5, p. 422. https://doi.org/10.1007/s10905-008-9140-5

  395. Samkov, M.N., On the possibility of collecting insects to artificial light in the daytime, Zool. Zh., 1989, vol. 68, no. 4, p. 110.

    Google Scholar 

  396. Sánchez-Bayo, F. and Wyckhuys, K.A.G., Worldwide decline of the entomofauna: a review of its drivers, Biol. Conserv., 2019, vol. 232, p. 8. https://doi.org/10.1016/j.biocon.2019.01.020

    Article  Google Scholar 

  397. Sanin, S.S., The current problems of phytosanitary in Russia, Izv. Timiryazev. Selskokhoz. Akad., 2016, no. 6, p. 45. https://www.elibrary.ru/item.asp?id=25817122

    Google Scholar 

  398. Sappington, T.W., Migratory flight of insect pests within a year-round distribution: European corn borer as a case study, J. Integr. Agric., 2018, vol. 17, no. 7, p. 1485. https://doi.org/10.1016/S2095-3119(18)61969-0

    Article  Google Scholar 

  399. Sappington, T.W. and Showers, W.B., Adult European corn borer (Lepidoptera: Pyralidae) flight activity in and away from aggregation sites, Environ. Entomol., 1983, vol. 12, no. 4, p. 1154. https://doi.org/10.1093/ee/12.4.1154

    Article  Google Scholar 

  400. Sarantseva, N.A., Ryabchinskaya, T.A., Kharchenko, G.L., and Bobreshova, I.Yu., Optimization of pheromone monitoring of the cotton bollworm on corn crops in the Central Chernozem Region, Zashch. Karantin Rast., 2014, no. 3, 27.

  401. Savchuk, I.V., Basumatorova, E.A., Surinsky, D.O., and Bolshakov, Yu.N., Use of electro-optical devices for crop protection, Izv. Orenburg. Gos. Agr. Univ., 2020, vol. 6, no. 86, p. 149.

    Google Scholar 

  402. Savoldelli, S. and Trematerra, P., Mass-trapping, mating- disruption and attracticide methods for managing stored-product insects: success stories and research needs, Stewart Postharvest Rev., 2011, vol. 7, no. 3, p. 1. https://doi.org/10.2212/spr.2011.3.7

    Article  Google Scholar 

  403. Sazonov, A.P., Preface: Synthetic sex attractants in plant protection, in Feromony nasekomykh i razrabotka putei ikh prakticheskogo ispol’zovaniya. Sbornik nauchnykh trudov (Insect Pheromones and Development of Ways of Their Practical Use: Collected Papers), Sazonov, A.P., Ed., Leningrad: VIZR, 1988, p. 5.

  404. Schauff, M.E., Ed., Collecting and Preserving Insects and Mites: Techniques and Tools, Washington DC: Systematic Entomology Laboratory, USDA, 2001. https://manualzz.com/doc/12328857/insects---collecting-and-preserving-insects-and-mites-too..

  405. Scheper, J., Reemer, M., van Kats, R., Ozinga, W.A., van der Linden, G.T.J., Schaminée, J.H.J., Siepel, H., and Kleijn, D., Museum specimens reveal loss of pollen host plants as key factor driving wild bee decline in the Netherlands, Proc. Natl. Acad. Sci., 2014, vol. 111, no. 49, p. 17552. https://doi.org/10.1073/pnas.1412973111

    Article  CAS  Google Scholar 

  406. Schlyter, F., Zhang, Q.H., Liu, G.T., and Ji, L.Z., A successful case of pheromone mass trapping of the bark beetle Ips duplicatus in a forest island, analysed by 20-year time-series data, Integr. Pest Manage. Rev., 2001, vol. 6, p. 185. https://doi.org/10.1023/A:1025767217376

  407. Schmidt-Büsser, D., von Arx, M., and Guerin, P.M., Host plant volatiles serve to increase the response of male European grape berry moths, Eupoecilia ambiguella, to their sex pheromone, J. Comp. Physiol. A, 2009, vol. 195, no. 9, p. 853. https://doi.org/10.1007/s00359-009-0464-1

  408. Schneider, D., Elektrophysiologische Untersuchungen von Chemo- und Mechanorezeptoren der Antenne des Seidenspinners Bombyx mori L., Z. Vergl. Physiol., 1957, vol. 40, no. 1, p. 8. https://doi.org/10.1007/BF00298148

  409. Schneider, D., Insect pheromone research: some history and 45 years of personal recollections, IOBC WPRS Bull., 1999, vol. 22, no. 9, p. 1.

    Google Scholar 

  410. Schröder, M.L., Glinwood, R., Ignell, R., and Krüger, K., The role of visual and olfactory plant cues in aphid behaviour and the development of non-persistent virus management strategies, Arthropod-Plant Inter., 2017, vol. 11, p. 1. https://doi.org/10.1007/s11829-016-9463-7

    Article  Google Scholar 

  411. Schuch, S., Wesche, K., and Schaefer, M., Long-term decline in the abundance of leafhoppers and planthoppers (Auchenorrhyncha) in Central European protected dry grasslands, Biol. Conserv., 2012, vol. 149, no. 1, p. 75. https://doi.org/10.1016/j.biocon.2012.02.006

    Article  Google Scholar 

  412. Schultzhaus, J.N., Saleem, S., Iftikhar, H., and Carney, G.E., The role of the Drosophila lateral horn in olfactory information processing and behavioral response, J. Insect Physiol., 2017, vol. 98, p. 29. https://doi.org/10.1016/j.jinsphys.2016.11.007

  413. Seibold, S., Gossner, M.M., Simons, N.K., Blüthgen, N., Müller, J., Ambarlı, D., Ammer, C., Bauhus, J., Fischer, M., Habel, J.C., Linsenmair, K.E., Nauss, T., Penone, C., Prati, D., Schall, P., Schulze, E.D., Vogt, J., Wllauer, S., and Weisser, W., Arthropod decline in grasslands and forests is associated with landscape-level drivers, Nature, 2019, vol. 574, no. 7780, p. 671. https://doi.org/10.1038/s41586-019-1684-3

    Article  CAS  Google Scholar 

  414. Shamshev, I.V. and Grichanov, I.Ya., The use of pheromones in phytosanitary technologies, Zashch. Karantin Rast., 2008, no. 9, p. 22.

    Google Scholar 

  415. Shapas, T.J., Burkholder, W.E., and Boush, G.M., Population suppression of Trogoderma glabrum by using pheromone luring for protozoan pathogen dissemination, J. Econ. Entomol., 1977, vol. 70, no. 4, p. 469. https://doi.org/10.1093/jee/70.4.469

  416. Sharma, A.K. and Bisen, U.K., Taxonomic documentation of insect pest fauna of vegetable ecosystem collected in light trap, Int. J. Environ. Sci. Dev. Monit., 2013, vol. 4, no. 3, p. 1.

    CAS  Google Scholar 

  417. Sharma, A., Sandhi, R.K., and Reddy, G.V., A review of interactions between insect biological control agents and semiochemicals, Insects, 2019, vol. 10, no. 12, art. 439. https://doi.org/10.3390/insects10120439

  418. Sheikh, A.H., Thomas, M., Bhandari, R., and Bunkar, K., Light trap and insect sampling: an overview, Int. J. Curr. Res., 2016, vol. 8, no. 11, p. 40868.

    Google Scholar 

  419. Shimoda, M. and Honda, K.I., Insect reactions to light and its applications to pest management, Appl. Entomol. Zool., 2013, vol. 48, no. 4, p. 413. https://doi.org/10.1007/s13355-013-0219-x

    Article  Google Scholar 

  420. Shortall, C.R. and Cook, L., Counts of melanic forms of three species of moth in the Rothamsted Insect Survey light-trap network, Rothamsted Res., 2022. https://doi.org/10.23637/rothamsted.98810

  421. Showers, W.B., Reed, G.L., Robinson, J.F., and DeRozari, M., Flight and sexual activity of the European corn borer, Environ. Entomol., 1976, vol. 5, no. 6, p. 1099. https://doi.org/10.1093/ee/5.6.1099

    Article  Google Scholar 

  422. Silva, A.A. da, Rebêlo, J.M.M., Carneiro, B.F., Castro, M.P.P., de Sousa de Almeida, M., Ponte, I.S., Aguiar, J.V.C., and Silva, F.S., Exploiting the synergistic effect of kairomones and light-emitting diodes on the attraction of phlebotomine sand flies to light traps in Brazil, J. Med. Entomol., 2019, vol. 56, no. 5, p. 1441. https://doi.org/10.1093/jme/tjz073

    Article  CAS  Google Scholar 

  423. Silva, A.P.O. da, Martins, J.R., Goulart, H.F., Riffel, A., Vaz, J.C., and Santana, A.E.G., Pest management in stored products: the case of the cigarette beetle, Lasioderma serricorne (Coleoptera: Anobiidae), in Sustainable Agriculture Reviews. Vol. 27, Lichtfouse, E., Ed., Cham: Springer, 2018, p. 61. https://doi.org/10.1007/978-3-319-75190-0_3

  424. Smart, L.E., Blight, M.M., and Hick, A.J., Effect of visual cues and a mixture of isothiocyanates on trap capture of cabbage seed weevil, Ceutorhynchus assimilis, J. Chem. Ecol., 1997, vol. 23, no. 4, p. 889. https://doi.org/10.1023/B:JOEC.0000006378.65158.ca

  425. Smart, L.E., Aradottir, G.I., and Bruce, T.J.A., Role of semiochemicals in integrated pest management, in Integrated Pest Management: Current Concepts and Ecological Perspective, Abrol, D.P., Ed., San Diego: Academic Press, 2014, p. 93. https://doi.org/10.1016/B978-0-12-398529-3.00007-5

  426. Sonkar, J., Ganguli, J., and Ganguli, R.N., Studies on correlation of pheromone trap catch of H. armigera (Hubner) with larval population in field and weather parameters, Agric. Sci. Dig., 2012, vol. 32, no. 3, p. 204.

  427. Soumit, D. and Sinjini, B., Insect fauna captured by light trapping in new town area, north 24 parganas, West Bengal, Indian J. Entomol., 2019, vol. 81, no. 1, p. 73. https://doi.org/10.5958/0974-8172.2019.00028.2

    Article  Google Scholar 

  428. Southwood, T.R.E., Henderson, P.A., and Woiwod, I.P., Stability and change over 67 years – the community of Heteroptera as caught in a light-trap at Rothamsted, UK, Eur. J. Entomol., 2003, vol. 100, no. 4, p. 557. https://doi.org/10.14411/eje.2003.084

    Article  Google Scholar 

  429. Srivastava, C.P. and Srivastava, R.P., Comparison of Heliothis armigera (Hübner) male moth catches in light and pheromone traps at Udaipur, Rajasthan, India, Int. J. Trop. Insect Sci., 1989, vol. 10, no. 5, p. 565. https://doi.org/10.1017/S1742758400021664

  430. Stavenga, D., Colour in the eyes of insects, J. Comp. Physiol. A, 2002, vol. 188, p. 337. https://doi.org/10.1007/s00359-002-0307-9

    Article  CAS  Google Scholar 

  431. Steinbauer, M.J., Using ultra-violet light traps to monitor autumn gum moth, Mnesampela privata (Lepidoptera: Geometridae), in south-eastern Australia, Aust. For., 2003, vol. 66, no. 4, p. 279. https://doi.org/10.1080/00049158.2003.10674922

  432. Stern, V.M., Smith, R., van den Bosch, R., and Hagen, K., The integration of chemical and biological control of the spotted alfalfa aphid: the integrated control concept, Hilgardia, 1959, vol. 29, no. 2, p. 81. https://doi.org/10.3733/hilg.v29n02p081

    Article  CAS  Google Scholar 

  433. Stockel, J., Sureau, F., Carles, J.P., Signification et limites du piégeage sexuel de la pyrale du maïs, Ostrinia nubilalis Hb. (Lépid. Pyralidae): recherche d’une relation entre captures de mâles et niveau de population, Agronomie, 1984, vol. 4, no. 7, p. 597.

  434. Stökl, J. and Steiger, S., Evolutionary origin of insect pheromones, Curr. Opin. Insect Sci., 2017, vol. 24, p. 36. https://doi.org/10.1016/j.cois.2017.09.004

    Article  Google Scholar 

  435. Stork, N.E., How many species of insects and other terrestrial arthropods are there on Earth? Annu. Rev. Entomol., 2018, vol. 63, p. 31. https://doi.org/10.1146/annurev-ento-020117-043348

    Article  CAS  Google Scholar 

  436. Stukenberg, N., Gebauer, K., and Poehling, H.M., Light emitting diode (LED)-based trapping of the greenhouse whitefly (Trialeurodes vaporariorum), J. Appl. Entomol., 2015, vol. 139, no. 4, p. 268. https://doi.org/10.1111/jen.12172

  437. Suckling, D.M., Stringer, L.D., Kean, J.M., Lo, P.L., Bell, V., Walker, J.T., Twidle, A.M., Jiménez-Pérezg, A., and El‐ Sayed, A.M., Spatial analysis of mass trapping: how close is close enough? Pest Manage. Sci., 2015, vol. 71, no. 10, p. 1452. https://doi.org/10.1002/ps.3950

    Article  CAS  Google Scholar 

  438. Suckling, D.M., Stringer, L.D., Jiménez-Pérez, A., Walter, G., Sullivan, N., and El-Sayed, A.M., With or without pheromone habituation: possible differences between insect orders? Pest Manage. Sci., 2018, vol. 74, no. 6, p. 1259. https://doi.org/10.1002/ps.4828

    Article  CAS  Google Scholar 

  439. Suh, E., Bohbot, J.D., and Zwiebel, L.J., Peripheral olfactory signaling in insects, Curr. Opin. Insect Sci., 2014, vol. 6, p. 86. https://doi.org/10.1016/j.cois.2014.10.006

    Article  Google Scholar 

  440. Surinsky, D.O., Parameters and modes of an energy-saving electro-optical converter for insect pest monitoring, Candidate’s Dissertation in Engineering, Tyumen, 2013.

  441. Svensson, G.P., Ryne, C., and Löfstedt, C., Heritable variation of sex pheromone composition and the potential for evolution of resistance to pheromone-based control of the Indian meal moth, Plodia interpunctella, J. Chem. Ecol., 2002, vol. 28, no. 7, p. 1447. https://doi.org/10.1023/A:1016204820674

  442. Swengel, S.R., Schlicht, D., Olsen, F., and Swengel, A.B., Declines of prairie butterflies in the midwestern USA, J. Insect Conserv., 2011, vol. 15, no. 1, p. 327. https://doi.org/10.1007/s10841-010-9323-1

    Article  Google Scholar 

  443. Szentkirályi, F., Fifty years-long insect survey in Hungary: T. Jeremy’s contribution to light-trapping, Acta Zool. Acad. Sci. Hung., 2002, vol. 48, suppl. 1, p. 85.

    Google Scholar 

  444. Szentkirályi, F., Long-term Insect Monitoring System (LIMSYS) based on light trap network, in Long-Term Ecological Research in the Kiskunság, Hungary, Kovács-Láng, E., Molnár, E., Kröel-Dulay, G., and Barabás, S., Eds., Vácrátót: Institute of Ecology and Botany of the Hungarian Academy of Sciences, 1999, p. 22.

  445. Tabata, J., Noguchi, H., Kainoh, Y., Mochizuki, F., and Sugie, H., Sex pheromone production and perception in the mating disruption‐resistant strain of the smaller tea leafroller moth, Adoxophyes honmai, Entomol. Exp. Appl., 2007, vol. 122, no. 2, p. 145. https://doi.org/10.1111/j.1570-7458.2006.00500.x

  446. Tang, Y.C., Zhou, C.L., Chen, X.M., and Zheng, H., Visual and olfactory responses of seven butterfly species during foraging, J. Insect Behav., 2013, vol. 26, no. 3, p. 387. https://doi.org/10.1007/s10905-012-9358-0

    Article  Google Scholar 

  447. Taschenberg, E.F. and Roelofs, W.L., Male redbanded leafroller moth orientation disruption in vineyards, Environ. Entomol., 1978, vol. 7, no. 1, p. 103. https://doi.org/10.1093/ee/7.1.103

    Article  CAS  Google Scholar 

  448. Tasin, M., Bäckman, A.C., Coracini, M., Casado, D., Ioriatti, C., and Witzgall, P., Synergism and redundancy in a plant volatile blend attracting grapevine moth females, Phytochemistry, 2007, vol. 68, no. 2, p. 203. https://doi.org/10.1016/j.phytochem.2006.10.015

    Article  CAS  Google Scholar 

  449. Taylor, L.R. and French, R.A., Rothamsted insect survey – fifth annual summary, in Rothamsted Experimental Station Report for 1973, Part 2, Dorking: Adlard & Son Ltd., Bartholomew Press, 1974, p. 240. https://doi.org/10.23637/ERADOC-1-8

  450. Terskov, I.A. and Kolomiets, N.G., Svetovye lovushki i ikh ispol’zovanie v zashchite rastenii (Light Traps and Their Use in Plant Protection), Moscow: Nauka, 1966.

  451. Thiagarajan, D. and Sachse, S., Multimodal information processing and associative learning in the insect brain, Insects, 2022, vol. 13, art. 332. https://doi.org/10.3390/insects13040332

  452. Thomas, C.D., Jones, T.H., and Hartley, S.E., “Insectageddon”: a call for more robust data and rigorous analyses, Global Change Biol., 2019, vol. 25, no. 6, p. 1891. https://doi.org/10.1111/gcb.14608

    Article  Google Scholar 

  453. Thorsteinson, A.J., Host selection in phytophagous insects, Annu. Rev. Entomol., 1960, vol. 5, p. 193. https://doi.org/10.1146/annurev.en.05.010160.001205

    Article  Google Scholar 

  454. Tingle, F.C. and Mitchell, E.R., Relationships between pheromone trap catches of male tobacco budworm, larval infestations, and damage levels in tobacco, J. Econ. Entomol., 1981, vol. 74, no. 4, p. 437. https://doi.org/10.1093/jee/74.4.437

    Article  Google Scholar 

  455. Tóth, M., Szarukán, I., Nagy, A., Ábri, T., Katona, V., Kő- rösi, Sz., Nagy, T., Szarvas, Á., and Koczor, S., An improved female-targeted semiochemical lure for the European corn borer Ostrinia nubilalis Hbn., Acta Phytopathol. Entomol. Hung., 2016, vol. 51, no. 2, p. 247. https://doi.org/10.1556/038.51.2016.2.9

  456. Tóth, M., Szarukán, I., Nagy, A., Furlan, L., Benvegnù, I., Rak Cizej, M., Ábri, T., Kéki, T., Körösi, S., Pogonyi, A., Toshova, T., Velchev, D., Atanasova, D., Kurtulus, A., Kay- dan, B.M., and Signori, A., European corn borer (Ostrinia nubilalis Hbn., Lepidoptera: Crambidae): comparing the performance of a new bisexual lure with that of synthetic sex pheromone in five countries, Pest Manage. Sci., 2017, vol. 73, no. 12, p. 2504. https://doi.org/10.1002/ps.4645

  457. Tovée, M.J., Ultra-violet photoreceptors in the animal kingdom: their distribution and function, Trends Ecol. Evol., 1995, vol. 10, no. 11, p. 455. https://doi.org/10.1016/S0169-5347(00)89179-X

    Article  Google Scholar 

  458. Trematerra, P., Integrated pest management of stored-product insects: practical utilization of pheromones, Anz. Schädlings. Pflanzen. Umwelt., 1997, vol. 70, no. 3, p. 41. https://doi.org/10.1007/BF01996919

    Article  Google Scholar 

  459. Truxa, C. and Fiedler, K., Attraction to light – from how far do moths (Lepidoptera) return to weak artificial sources of light? Eur. J. Entomol., 2012, vol. 109, no. 1, p. 77. https://doi.org/10.14411/eje.2012.010

    Article  Google Scholar 

  460. Tsurikov, M.N., Simple traps for sampling invertebrates, Zool. Zh., 2006, vol. 85, no. 6, p. 760.

    Google Scholar 

  461. Turlings, T.C. and Erb, M., Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential, Annu. Rev. Entomol., 2018, vol. 63, p. 433. https://doi.org/10.1146/annurev-ento-020117-043507

    Article  CAS  Google Scholar 

  462. Turner, W.B., Female Lepidoptera at light traps, J. Agric. Res., 1918, vol. 14, no. 3, p. 135.

    Google Scholar 

  463. Tuttle, A.F., Ferro, D.N., and Idoine, K., Role of visual and olfactory stimuli in host finding of adult cabbage root flies, Delia radicum, Entomol. Exp. Appl., 1988, vol. 47, no. 1, p. 37. https://doi.org/10.1111/j.1570-7458.1988.tb02279.x

  464. Tyshchenko, V.P., Fiziologiya nasekomykh (Physiology of Insects), Moscow: Vysshaya Shkola, 1986.

  465. Väisänen, R., Valtakunnallinen yöperhosseuranta, Baptria, 1993, vol. 18, p. 9.

    Google Scholar 

  466. Van der Kooi, C.J., Stavenga, D.G., Arikawa, K., Belušič, G., and Kelber, A., Evolution of insect color vision: from spectral sensitivity to visual ecology, Annu. Rev. Entomol., 2021, vol. 66, p. 435. https://doi.org/10.1146/annurev-ento-061720-071644

    Article  CAS  Google Scholar 

  467. Van der Sluijs, J.P., Insect decline, an emerging global environmental risk, Curr. Opin. Environ. Sustainability, 2020, vol. 46, p. 39. https://doi.org/10.1016/j.cosust.2020.08.012

    Article  Google Scholar 

  468. Van Dyck, H., Van Strien, A.J., Maes, D., and Van Swaay, C., Declines in common, widespread butterflies in a landscape under intense human use, Conserv. Biol., 2009, vol. 23, no. 4, p. 957. https://doi.org/10.1111/j.1523-1739.2009.01175.x

    Article  Google Scholar 

  469. Van Klink, R., Bowler, D.E., Gongalsky, K.B., Swengel, A.B., Gentile, A., and Chase, J.M., Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances, Science, 2020, vol. 368, no. 6489, p. 417. https://doi.org/10.1126/science.aax9931

    Article  CAS  Google Scholar 

  470. Vega, F.E., Dowd, P.F., Lacey, L.A., Pell, J.K., Jackson, D.M., and Klein, M.G., Dissemination of beneficial microbial agents by insects, in Field Manual of Techniques in Invertebrate Pathology: Application and Evaluation of Pathogens for Control of Insects and Other Invertebrate Pests, Lacey, L.A. and Kaya, H.K., Eds., Dordrecht: Springer, 2000, p. 153. https://doi.org/10.1007/978-94-017-1547-8_6

  471. Vendilo, N.V. and Lebedeva, K.V., Use of pheromone preparations in forest management, Zashch. Karantin Rast., 2016, no. 5, p. 43. https://www.elibrary.ru/item.asp?id=25958564

    Google Scholar 

  472. Vendilo, N.V., Pletnev, V.A., and Lebedeva, K.V., Use of pheromones in protecting orchards from pests, Agrokhimiya, 2009, no. 8, p. 72.

    Google Scholar 

  473. Verheijen, F.J., The mechanisms of the trapping effect of artificial light sources upon animals, Arch. Néerland. Zool., 1958, vol. 13, no. 1, p. 1.

    Google Scholar 

  474. Visalakshmi, V., Ra, P., and Krishnayya, P.V., Utility of sex pheromone for monitoring Heliothis armigera (Hüb.) infesting sunflower, J. Entomol. Res., 2000, vol. 24, no. 3, p. 255.

  475. Visser, J.H., Host odor perception in phytophagous insects, Annu. Rev. Entomol., 1986, vol. 31, p. 121. https://doi.org/10.1146/annurev.ento.31.1.121

    Article  Google Scholar 

  476. Voerman, S., Persoons, C.J., and Priesner, E., Sex attractant for currant clearwing moth Synanthedon tipuliformis (Clerck) (Lepidoptera: Sesiidae), J. Chem. Ecol., 1984, vol. 10, no. 9, p. 1371. https://doi.org/10.1007/BF00988118

  477. Voinyak, V.I. and Kovalev, B.G., Efficiency of sex pheromones of corn pests, Zashch. Karantin Rast., 2010, no. 7, p. 25.

    Google Scholar 

  478. Voinyak, V., Bradovski, V., Batko, M., and Nastase, T., Results and prospects of using bioactive substances in integrated plant protection systems, Prot. Plant. Real. Persp., 2009, vol. 40, p. 212.

    Google Scholar 

  479. Vozmilov, A.G., Dyuryagin, A.Yu., and Surinsky, D.O., Light traps for monitoring the abundance and stage of development of insect pests, Dost. Nauki Tekhn. Agroprom. Kompl., 2011, vol. 7, p. 76.

    Google Scholar 

  480. Vreysen, M.J.B., Robinson, A.S., Hendrichs, J., Eds., Area- Wide Control of Insect Pests: from Research to Field Implementation, Dordrecht: Springer, 2007.

  481. Vuts, J., Razov, J., Kaydan, M.B., and Tóth, M., Visual and olfactory cues for catching parasitic wasps (Hymenoptera: Scoliidae), Acta Zool. Acad. Sci. Hung., 2012, vol. 58, no. 4, p. 351.

    Google Scholar 

  482. Wagner, D.L., Insect declines in the Anthropocene, Annu. Rev. Entomol., 2020, vol. 65, p. 457. https://doi.org/10.1146/annurev-ento-011019-025151

    Article  CAS  Google Scholar 

  483. Wagner, D.L., Fox, R., Salcido, D.M., and Dyer, L.A., A window to the world of global insect declines: moth biodiversity trends are complex and heterogeneous, Proc. Natl. Acad. Sci., 2021, vol. 118, no. 2, art. e2002549117. https://doi.org/10.1073/pnas.2002549117

  484. Wang, T. and Montell, C., Phototransduction and retinal degeneration in Drosophila, Pflügers Arch. Eur. J. Physiol., 2007, vol. 454, p. 821. https://doi.org/10.1007/s00424-007-0251-1

  485. Waringer, J.A., Phenology and the influence of meteorological parameters on the catching success of light‐trapping for Trichoptera, Freshwater Biol., 1991, vol. 25, no. 2, p. 307. https://doi.org/10.1111/j.1365-2427.1991.tb00493.x

    Article  Google Scholar 

  486. Warren, M.S., Maes, D., van Swaay, C.A.M., Goffart, P., Van Dyck, H., Bourn, N.A.D., Wynhoff, I., Hoare, D., and Ellis, S., The decline of butterflies in Europe: problems, significance, and possible solutions, Proc. Natl. Acad. Sci., 2021, vol. 118, no. 2, art. e2002551117. https://doi.org/10.1073/pnas.2002551117

  487. Webster, R.P., Charlton, R.E., Schal, C., and Cardé, R.T., High-efficiency pheromone trap for the European corn borer (Lepidoptera: Pyralidae), J. Econ. Entomol., 1986, vol. 79, no. 4, p. 1139. https://doi.org/10.1093/jee/79.4.1139

    Article  Google Scholar 

  488. Weinzierl, R., Henn, T., Koehler, P.G., and Tucker, C.L., Insect Attractants and Traps (IFAS Extension, ENY277), University of Florida, 2005. http://ufdcimages.uflib.ufl.edu/IR/00/00/27/94/00001/IN08000.pdf

  489. Welter, S., Pickel, C., Millar, J., Cave, F., Van Steenwyk, R., and Dunley, J., Pheromone mating disruption offers selective management options for key pests, Calif. Agric., 2005, vol. 59, no. 1, p. 16. https://doi.org/10.3733/ca.v059n01p16

    Article  Google Scholar 

  490. Wepprich, T., Adrion, J.R., Ries, L., Wiedmann, J., and Haddad, N.M., Butterfly abundance declines over 20 years of systematic monitoring in Ohio, USA, PLoS One, 2019, vol. 14, no. 7, art. e0216270. https://doi.org/10.1371/journal.pone.0216270

  491. Wessnitzer, J. and Webb, B., Multimodal sensory integration in insects – towards insect brain control architectures, Bioinspiration Biomimetics, 2006, vol. 1, no. 3, p. 63.

    Article  Google Scholar 

  492. Whitfield, E.C., Lobos, E., Cork, A., and Hall, D.R., Comparison of different trap designs for capture of noctuid moths (Lepidoptera: Noctuidae) with pheromone and floral odor attractants, J. Econ. Entomol., 2019, vol. 112, no. 5, p. 2199. https://doi.org/10.1093/jee/toz093

    Article  Google Scholar 

  493. Whittaker, R.H. and Feeny, P.P., Allelochemics: chemical interactions between species, Science, 1971, vol. 171, no. 3973, p. 757. https://doi.org/10.1126/science.171.3973.757

    Article  CAS  Google Scholar 

  494. Wicker-Thomas, C., Evolution of insect pheromones and their role in reproductive isolation and speciation, Ann. Soc. Entomol. Fr., 2011, vol. 47, no. 1, p. 55. https://doi.org/10.1080/00379271.2011.10697696

    Article  Google Scholar 

  495. Wigglesworth, V.B., Insect Physiology, London: Methuen & Co. Ltd.; New York: John Wiley & Sons Inc., 1934.

  496. Williams, C.B., An analysis of four years captures of insects in a light trap. Part I. General survey; sex proportion; phenology; and time of flight, Trans. R. Entomol. Soc. London, 1939, vol. 89, no. 6, p. 79.

    Article  Google Scholar 

  497. Williams, C.B., An analysis of four years captures of insects in a light trap. Part II. The effect of weather conditions on insect activity; and the estimation and forecasting of changes in the insect population, Trans. R. Entomol. Soc. London, 1940, vol. 90, no. 8, p. 227.

    Article  Google Scholar 

  498. Williams, C.B., The Rothamsted light trap, Proc. R. Entomol. Soc. London Ser. A Gen. Entomol., 1948, vol. 23, no. 7, p. 80. https://doi.org/10.1111/j.1365-3032.1948.tb00623.x

    Article  Google Scholar 

  499. Wilson, A. and Bauer, L., Light and pheromone traps: their place in monitoring Heliothis abundance, in Proceedings of the 3rd Australian Cotton Conference. Surfers Paradise, Queensland, Australia, August 20th–21st, 1986, Wee Waa: Australian Cotton Grower’s Research Association, 1986, p. 239.

  500. Witzgall, P., Kirsch, P., and Cork, A., Sex pheromones and their impact on pest management, J. Chem. Ecol., 2010, vol. 36, no. 1, p. 80. https://doi.org/10.1007/s10886-009-9737-y

    Article  CAS  Google Scholar 

  501. Witzgall, P., Stelinski, L., Gut, L., and Thomson, D., Codling moth management and chemical ecology, Annu. Rev. Entomol., 2008, vol. 53, p. 503. https://doi.org/10.1146/annurev.ento.53.103106.093323

    Article  CAS  Google Scholar 

  502. Yadav, A., Keval, R., and Yadav, A., Monitoring of gram pod borer, Helicoverpa armigera (Hübner) through pheromone traps in different modules of short duration pigeonpea, Legume Res. Int. J., 2021, vol. 44, no. 10, p. 1192. https://doi.org/10.18805/LR-4231

  503. Yamamura, K., Yokozawa, M., Nishimori, M., Ueda, Y., and Yokosuka, T., How to analyze long-term insect population dynamics under climate change: 50-year data of three insect pests in paddy fields, Popul. Ecol., 2006, vol. 48, p. 31. https://doi.org/10.1007/s10144-005-0239-7

    Article  Google Scholar 

  504. Yang, L.H., Postema, E.G., Hayes, T.E., Lippey, M.K., and MacArthur-Waltz, D.J., The complexity of global change and its effects on insects, Curr. Opin. Insect Sci., 2021, vol. 47, p. 90. https://doi.org/10.1016/j.cois.2021.05.001

    Article  Google Scholar 

  505. Yang, Z., Bengtsson, M., and Witzgall, P., Host plant volatiles synergize response to sex pheromone in codling moth, Cydia pomonella, J. Chem. Ecol., 2004, vol. 30, no. 3, p. 619. https://doi.org/10.1023/B:JOEC.0000018633.94002.af

  506. Yathom, S., Sex ratio and mating status of Earias insulana females (Lepidoptera: Noctuidae) collected from light traps in Israel, Isr. J. Entomol., 1981, vol. 15, p. 97.

  507. Yatsynin, V.G., Pheromones in insect control, Zashch. Rast., 1989, no. 1, p. 60.

    Google Scholar 

  508. Yela, J.L. and Holyoak, M., Effects of moonlight and meteorological factors on light and bait trap catches of noctuid moths (Lepidoptera: Noctuidae), Environ. Entomol., 1997, vol. 26, no. 6, p. 1283. https://doi.org/10.1093/ee/26.6.1283

    Article  Google Scholar 

  509. Yew, J.Y. and Chung, H., Insect pheromones: an overview of function, form, and discovery, Progr. Lipid Res., 2015, vol. 59, p. 88. https://doi.org/10.1016/j.plipres.2015.06.001

    Article  CAS  Google Scholar 

  510. Yurchenko, E.G., Disorientation of the European grapevine moth with synthetic sex pheromone Shin-Etsu MD, Zashch. Karantin Rast., 2019, no. 2, p. 24.

    Google Scholar 

  511. Zakharenko, V.A., Phytosanitary potential and its realization: pesticide application in integrated phytosanitary management of agroecosystems in Russia, Agrokhimiya, 2013, no. 7, p. 3.

    Google Scholar 

  512. Zalucki, M.P. and Furlong, M.J., Forecasting Helicoverpa populations in Australia: a comparison of regression based models and a bioclimatic based modeling approach, Insect Sci., 2005, vol. 12, no. 1, p. 45. https://doi.org/10.1111/j.1672-9609.2005.00007.x

  513. Zekeya, N., Dubois, T., Smith, J., and Ramasamy, S., Field effectiveness of Metarhizium anisopliae and pheromone traps against Phthorimaea absoluta on tomato in Tanzania, Crop Prot., 2022, vol. 156, art. 105942. https://doi.org/10.1016/j.cropro.2022.105942

  514. Zhang, Y.J., Jiang, Y.Y., and Jiang, X.F., Advances on the key control techniques of Loxostege sticticalis in China, China Plant Prot., 2008, vol. 28, no. 5, p. 15.

  515. Zhukovskaya, M.I., Severina, I.Yu., and Novikova, E.S., Anthropogenic light pollution and its effect on insects, Biosfera, 2022, vol. 14, no. 2, p. 126. https://doi.org/10.24855/biosfera.v14i2.669

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project 22-26-00199.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Frolov.

Ethics declarations

Statement on the welfare of animals. All the applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All the procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frolov, A.N. Controlling the Behavior of Harmful Insects: Light and Chemical Signals and Their Combined Action. Entmol. Rev. 102, 782–819 (2022). https://doi.org/10.1134/S0013873822060033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0013873822060033

Keywords:

Navigation