Skip to main content
Log in

Tools for detecting insect semiochemicals: a review

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Semiochemicals are chemical compounds that are released by many species as a means of intra- and interspecific communication. Insects have extremely advanced olfactory systems; indeed, they rely on smell when performing many of their main behaviors, such as oviposition, breeding, prey location, and defense. This characteristic of insects implies that semiochemicals could be used for various applications, including in agriculture, where they could be employed along with other tools to control pest insects. The aim of this review is to present the main techniques used and the state of the art in the detection of semiochemicals, focusing on pheromones. In addition to the traditional methods of identifying semiochemicals, such as gas chromatography coupled to a high-resolution detection mode (e.g., flame ionization (FID), electron capture (ECD), photoionization (PID), or mass spectrometry (MS)), other tools are addressed in this review, including sensors and biosensors. While these new technologies may be used under laboratory conditions to improve or complement technologies that are already being used, they are mainly intended for use as new agricultural tools for detecting and controlling pest insects in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4a–b
Fig. 5
Fig. 6
Fig. 7a–c
Fig. 8a–b
Fig. 9a–c
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yew JY, Chung H. Insect pheromones: an overview of function, form, and discovery. Prog Lipid Res. 2015; https://doi.org/10.1016/j.plipres.2015.06.001.

  2. Tewari S, Leskey TC, Nielsen AL, Pinero JC, Rodriguez-Saona CR. Use of pheromone in insect pest management, with special attention to weevil pheromones. J Integr Pest Manag. 2014; https://doi.org/10.1016/B978-0-12-398529-3.00010-5.

  3. Karlson P, Luscher M. Pheromones: a new term for a class of biologically active substances. Nature. 1959; https://doi.org/10.1038/183055a0.

  4. Sakurai T, Namiki S, Kanzaki R. Molecular and neural mechanisms of sex pheromone reception and processing in the silkmoth Bombyx mori. Front Phyiol. 2014; https://doi.org/10.3389/fphys.2014.00125.

  5. Harris C, Abubeker S, Yu M, Leskey T, Zhang A. Semiochemical production and laboratory behavior response of the brown marmorated stink bug, Halyomorpha halys. Plos One. 2015; https://doi.org/10.1371/journal.pone.0140876.

  6. Wong J, Morrison A, Stoddard ST, Astete H, Chu YY, Baseer I, et al. Linking oviposition ite choice to offspring fitness in Aedes aegypti: consequences for targeted larval control of control vectors. PLoS Negl Trop Dis. 2012; https://doi.org/10.1371/journal.pntd.0001632.

  7. Borges M, Schmidt FGV, Sujii ER, Medeiros MA, Mori K, Zarbin PHG, et al. Field responses of stink bugs to the natural and synthetic pheromone of the neotropical brown stink bug, Euschistus heros (Heteroptera: Pentatomidae). Physiol Entomol. 1998a; https://doi.org/10.1046/j.1365-3032.1998.233086.x.

  8. Borges M, Moraes MCB, Peixoto MF, Pires CSS, Sujii ER, Laumann RA. Monitoring the neotropical brown stink bug Euschistus heros (F.) (Hemiptera: Pentatomidae) with pheromone-baited traps in soybean fields. J Appl Entomol. 2011; doi:https://doi.org/10.1111/j.1439-0418.2010.01507

  9. Millar RP. GnRHs and GnRH receptors. Anim Reprod Sci. 2005; https://doi.org/10.1016/j.anireprosci.2005.05.032.

  10. Levine JD, Millar JG. Chemical signaling: laser on the fly reveals a new male-specific pheromone. Curr Biol. 2009; https://doi.org/10.1016/j.cub.2009.06.051.

  11. Moraes MCB, Pareja M, Laumann RA, Hoffmann-Campo CB, Borges M. Response of the parasitoid Telenomus podisi to induced volatiles from soybean damaged by stink bug herbivory and oviposition. J Plant Interact. 2008a; https://doi.org/10.1080/17429140701810724.

  12. Witzgall P, Kirsch P, Cork A. Sex pheromones and their impact on pest management. J Chem Ecol. 2010; https://doi.org/10.1007/s10886-009-9737-y.

  13. Birch KF, Haynes EA. Insect pheremones. J Chem Ecol. 1984; https://doi.org/10.1111/j.1530-2415.2008.00155.x.

  14. Jurenka R. Insect pheromone biosynthesis. Top Curr Chem. 2004; https://doi.org/10.1007/b95450.

  15. Zarbin PHG, Rodrigues MACM. Feromômios de insetos: Tecnologia e desafios para uma agricultura competitiva no Brasil. Quim Nova. 2009;32:703–16.

    Article  Google Scholar 

  16. Kroschel J, Zegarra O. Attract-and-kill as a new strategy for the management of the potato tuber moths Phthorimaea operculella (Zeller) and Symmetrischema tangolias (Gyen) in potato: evaluation of its efficacy under potato field and storage conditions. Pest Manag Sci. 2013; https://doi.org/10.1002/ps.3483.

  17. Welter SC, Pickel C, Millar J, Cave F, Van Steenwyk R, Dunley J. Pheromone mating disruption offers selective management options for key pests. Calif Agric. 2008; https://doi.org/10.3733/ca.v059n01p16.

  18. Millar JG, McElfresh JS, Romero C, Vila M, Mari-Mena N, Lopez-Vaamonde C. Identification of the sex pheromone of a protected species, the Spanish moon moth Graellsia isabellae. J Chem Ecol. 2010;36:923–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Welter SC, Pickel C, Millar J, Cave F, Van Steenuyk RA, Dunley J. Pheromone mating disruption offers sesletrive management options for key pests. Calif Agric. 2005;59:16–22.

    Article  Google Scholar 

  20. Jones GR, Oldham NJ. Pheromone analysis using capillary gas chromatographic techniques. J Chromatogr A. 1999; https://doi.org/10.1016/S0021-9673(99)00446-X.

  21. Aldrich JR. Chemical ecology of the Heteroptera. Annu Rev Entomol. 1988; https://doi.org/10.1146/annurev.ento.33.1.211.

  22. Pavis C, Malosse C, Ducrot PH, Descoins C. Dorsal abdominal glands in nymphs of southern green stink bug, Nezara viridula (L.) (heteroptera: Pentatomidae): chemistry of secretions of five instars and role of (E)-4-oxo-2-decenal, compound specific to first instars. J Chem Ecol. 1994; https://doi.org/10.1007/BF02033198.

  23. Laumann RA, Moraes MCB, Cokl A, Borges M. Eavesdropping on sexual vibratory signals of stink bugs (Hemiptera: Pentatomidae) by the egg parasitoid Telenomus podisi. Anim Behav. 2007; https://doi.org/10.1016/j.anbehav.2006.09.011.

  24. Pareja M, Borges M, Laumann RA, Moraes MCB. Inter-and intraspecific variation in defensive compounds produced by five neotropical stink bug species (Hemiptera: Pentatomidae). J Insect Physiol. 2007; https://doi.org/10.1016/j.jinsphys.2007.04.004.

  25. Ando T, Yamakawa R. Chiral methyl-branched pheromones. Nat Prod Rep. 2015; https://doi.org/10.1039/c4np00138a.

  26. Butenandt A, Beckmann R, Stamm D, Hecker E. Über den sexuallockstoff des seidenspinners Bombyx mori. Reindarstellung und Konstitution. Z. Naturforsch. 1959;14b:283–4.

    Google Scholar 

  27. Aldrich J, Oliver JE, Lusby WR, Kochansky JP, Lockwood JA. Pheromone strains of the cosmopolitan pest, Nezara viridula (Heteroptera: Pentatomidae). J Exp Zool. 1987; https://doi.org/10.1002/jez.1402440121.

  28. Aldrich JR. Identification and attractiveness of a major pheromone component for Nearctic Euschistus spp. stink bugs (Heteroptera: Pentatomidae). Environmental. 1991;20:477–83.

    CAS  Google Scholar 

  29. Baker R, Borges M, Cooke NG, Herbert RH. Identification and synthesis of (Z)-(1′S,3′R,4′S)(−)-2-(3′,4′-epoxy-4′-methylcyclohexyl)-6-methylhepta-2,5-diene, the sex pheromone of the southern green stinkbug, Nezara viridula (L.). J Chem Soc. 1987;8:414–6.

  30. Mcbrien HL, Millar JG, Gottlieb L, Chen X, Rice RE. Male-produced sex attractant pheromone of the green stink bug, Acrosternum hilare (say). J Chem Ecol. 2011; https://doi.org/10.1023/A:1010460709535.

  31. Aldrich JR, Lusby WR, Marron BE, Nicolaou KC, Hoffmann MP, Wilson LT. Pheromone blends of green stink bugs and possible parasitoid selection. Naturwissenschaften. 1989; https://doi.org/10.1007/BF00366402.

  32. Blassioli-Moraes MC, Laumann RA, Oliveira MWM, Woodcock CM, Mayon P, Hooper A, et al. Sex pheromone communication in two sympatric neotropical stink bug species Chinavia ubica and Chinavia impicticornis. J Chem Ecol. 2012; https://doi.org/10.1007/s10886-012-0142-6.

  33. Borges M, Mori K, Costa MLM, Sujii ER. Behavioural evidence of methyl-2,6,10-trimethyltridecanoate as a sex pheromone of Euschistus heros ( Het., Pentatsmidae ). J Appl Ent. 1998b;122:335–8.

  34. Borges M, Zarbin PHG, Ferreira JTB, DaCosta MLM. Pheromone sharing: blends based on the same compounds for Euschistus heros and Piezodorus guildinii. J Chem Ecol. 1999; https://doi.org/10.1590/S1519-566X2008000500001.

  35. Costa MLM, Borges M, Vilela EF, Marco JRP, Lima ER. Effect of stereoisomers of the main component of the sex pheromone of Euschistus heros (F.) (Hemiptera:Pentatomidae) in the attractiveness of females. Ecol Behav Bionomics. 2000; https://doi.org/10.1590/S0301-80592000000300004.

  36. Moraes MCB, Millar JG, Laumann RA, Sujji ER, Pires BM, Borges M. Sex attractant pheromone from the neotropical red-shouldered stink bug, Thyanta perditor (F.). J Chem Ecol. 2005; https://doi.org/10.1007/s10886-005-5294-1.

  37. Borges M, Birkett M, Aldrich JR, Oliver JE, Chiba M, Murata Y, et al. Sex attractant pheromone from the rice stalk stink bug, Tibraca limbativentris stal. J Chem Ecol. 2006; https://doi.org/10.1007/s10886-006-9197-6.

  38. Oliveira MWM, Borges R, Andrade C, Laumann RA, Barrigossi JA, Blassioli-Moraes MC. Zingiberenol, (1S,4R,1′S)-4-(1′,5′-dimethylhex-4′-enyl)-1-methylcyclohex-2-en-1-ol, identified as the sex pheromone produced by males of the rice stink bug Oebalus poecilus (Heteroptera: Pentatomidae). J Agric Food Chem. 2013; https://doi.org/10.1017/CBO9781107415324.004.

  39. Tumlinso JH, Hardee DD, Gueldner RC, Thompson AC, Hedin PA. Sex pheromones produced by male boll weevil: isolation, identification, and synthesis. Science. 1969; https://doi.org/10.1126/science.166.3908.1010.

  40. Eller FJ, Bartelt RJ, Shasha BS, Schuster DJ, Riley DG, Stansly PA, et al. Aggregation pheromone for the pepper weevil, Anthonomus eugenii cano (Coleoptera: Curculionidae): identification and field activity. J Chem Ecol. 1994; https://doi.org/10.1007/BF02059879.

  41. Oehlschlager AC, Chinchilla CM, Gonzalez LM, Jiron LF, Mexzon R, Morgan B. Development of a pheromone-based trapping system for Rhynchophorus palmarum (Coleoptera: Curculionidae). J Econ Entomol. 1993;86:1381–92.

    Article  Google Scholar 

  42. Rochat D, Malosse C, Lettere M, Ramirez-Lucas P, Einhorn J, Zagatti P. Identification of new pheromone-related compounds from volatiles produced by males of four Rhynchophorinae weevils (Coleoptera, Curculionidae). C R Acad Sci Paris Ser II. 1993;316:1737–42.

  43. House RJ, Hanges P, Ruiz-Quintanilla SA. The global leadership and organizational behavior effectiveness research program. Pol Psychol Bull. 1997;28(3):215–54.

    Google Scholar 

  44. Anderson AR, Wanner KW, Trowell SC, Warr CG, Jaquin-Joly E, Zagatti P, Robertson H, Newcomb RD. Functional analysis of female-biased odorant receptors from the silkworm, Bombyx mori. Insect Biochem Molec Biol. 2009; doi:https://doi.org/10.1016/j.ibmb.2008.11.002.

  45. Millar JG, Haynes KF. Methods in chemical ecology: chemical methods. 2nd ed. London: Chapman & Hall; 2000.

    Google Scholar 

  46. Moraes MCB, Borges M, Pareja M, Vieira HG, De Souza Sereno FTP, Laumann RA. Food and humidity affect sex pheromone ratios in the stink bug, Euschistus heros. Physiol Entomol. 2008b; https://doi.org/10.1111/j.1365-3032.2007.00600.x.

  47. Arrese EL, Soulages JL. Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol. 2010; https://doi.org/10.1146/annurev-ento-112408-085356.

  48. Berger A, Tran AH, Dida J, Minkin S, Gerard NP, Yeomans J, et al. Diminished pheromone-induced sexual behavior in neurokinin-1 receptor deficient (TACR1−/−) mice. Genes Brain Behav. 2012; https://doi.org/10.1111/j.1601-183X.2012.00787.x.

  49. Torto B, Carroll MJ, Duehl A, Fombong AT, Gozansky TK, Nazzi F, et al. Standard methods for chemical ecology research in Apis mellifera. J Apic Res. 2013; https://doi.org/10.3896/IBRA.1.52.4.06.

  50. Augusto F, Valente ALP. Applications of solid-phase microextration to chemical analysis of live biological live. TrAC Trends Anal Chem. 2002; https://doi.org/10.1016/S0165-9936(02)00602-7.

  51. Castro R, Natera R, Duryewan E, Barroso CG. Application of solid phase extraction techniques to analyse volatile compounds in wines and other enological products. Eur Food Res Technol. 2008; https://doi.org/10.1007/s00217-008-0900-4.

  52. Millar JG, Sims JJ. Preparation cleanup and preliminary fractionation of extracts. In: Millar JG, Haynes KF, editors. Methods in chemical ecology: chemical methods. Boston: Kluwer Academic Publishers; 1998. p. 1–37.

    Google Scholar 

  53. Schneider D. Elektrophysiologische Untersuchungen von Chemo-und Mechanorezeptoren der Antenne des Seidenspinners Bombyx mori L. J Comp Physiol A. 1957; https://doi.org/10.1007/BF00298148.

  54. Magalhães DM, Borges M, Laumann RA, Woodcock CM, Pickett JA, Birkett MA, et al. Influence of two acyclic homoterpenes (tetranorterpenes) on the foraging behavior of Anthonomus grandis Boh. J Chem Ecol. 2016; https://doi.org/10.1007/s10886-016-0691-1.

  55. Hardie J, Pickett J, Wadhams LJ, Woodcock CM. Methyl salicylate and (−)-(1R,5S)-myrtenal are plant-derived repellents for black bean aphid, Aphis fabae Scop. (Homoptera: Aphididae). J Chem Ecol. 1994; https://doi.org/10.1007/BF02098393.

  56. Moorhouse JE, Kennedy JS. Laboratory observations on locust responses to wind-borne grass odour. Entomol Exp Appl. 1969; https://doi.org/10.1111/j.1570-7458.1969.tb02547.x.

  57. Myrick AJ, Baker TC. Chopper-stabilized gas chromatography-electroantennography: part I. Background, signal processing and example. Biosens Bioelectron. 2012; https://doi.org/10.1016/j.bios.2011.10.017.

  58. Siciliano P, He XL, Woodcock C, Pickett JA, Field LM, Birkett MA, et al. Identification of pheromone components and their binding affinity to the odorant binding protein CcapOBP83a-2 of the Mediterranean fruit fly, Ceratitis capitata. Insect Biochem Mol Biol. 2014; https://doi.org/10.1016/j.ibmb.2014.02.005.

  59. Park KC, Ochieng S, Zhu J, Baker TC. Odor discrimination using insect electroantennogram responses from an insect antennal array. Chem Senses. 2002; https://doi.org/10.1093/chemse/27.4.343.

  60. Olsson POC, Lofstedt C, Anderbrant O. Attraction and oviposition of Ephestia kueehniella induced by volatiles identified from chocolate products. Entomol Exp Appl. 2006; https://doi.org/10.1111/j.1570-7458.2006.00401.x.

  61. Zhang QH, Erbilgin N, Seybold SJ. GC-EAD responses to semiochemicals by eight beetles in the subcortical community associated with Monterey pine trees in coastal California: similarities and disparities across three trophic levels. Chemoecology. 2008; https://doi.org/10.1007/s00049-008-0411-6.

  62. Thakur MS, Ragaven KV. Biosensors in food processing. J Food Sci Technol. 2013; https://doi.org/10.1007/s13197-012-0783-z.

  63. Gerard M, Chaubey A, Malhotra BD. Application of conducting polymers to biosensors. Biosens Bioelectron. 2002; https://doi.org/10.1016/S0956-5663(01)00312-8.

  64. Mehrvar M, Abdi M. Recent developments, characteristics, and potential applications of electrochemical biosensors. Anal Sci. 2004; https://doi.org/10.2116/analsci.20.1113.

  65. Mcquade DT, Pullen A, Timothy MS. Conjugated polymer-based chemical sensors. Chem Rev. 2000; https://doi.org/10.1021/cr9801014.

  66. Salvatierra RV, Oliveira MM, Zarbin AJG. One-pot synthesis and processing of transparent, conducting, and freestanding carbon nanotubes/polyaniline composite films. Chem Mater. 2010; https://doi.org/10.1021/cm1012153.

  67. Gheorghe I, Czobor I, Lazar V, Chifiriuc MC. Present and perspectives in pesticides biosensors development and contribution of nanotechnology. In: Grumezescu AM, editors. New pesticides and soil sensors. Nanotechnology in the agri-food industry. London: Academic Press; 2017. pp. 337–372.

  68. Bidan G. Electroconducting conjugated polymers: new sensitive matrices to build up chemical or electrochemical sensors. A review. Sensors Actuators B Chem. 1992; https://doi.org/10.1016/0925-4005(92)80029-W.

  69. Petty MC. Molecular electronics: prospects for instrumentation and measurement science. Meas Sci Technol. 1996; https://doi.org/10.1088/0957-0233/7/5/001.

  70. Janata J, Josowicz M. Conducting polymers in electronic chemical sensors. Nat Mater. 2003; https://doi.org/10.1038/nmat768.

  71. Murty BS, Shankar P, Raj B, Rath BB, Murday J. Applications of nanomaterials. In: Murty BS, Shankar P, Raj B, Rath BB, Murday J, editors. Textbook of nanoscience and nanotechnology. Berlin: Springer; 2013. p. 107–48.

    Chapter  Google Scholar 

  72. Bai H, Shi G. Gas sensors based on conducting polymers. Sensors. 2007; https://doi.org/10.3390/s7030267.

  73. Partridge AC, Harris P, Andrews MK. High sensitivity conducting polymer sensors. Analyst. 1996; https://doi.org/10.1039/an9962101349.

  74. Wang T, Farajollani M, Choi YS, Lin IT, Marschall JE, Thompsom NM, et al. Electroactive polymers for sensing. Interface Focus. 2016; https://doi.org/10.1098/rsfs.2016.0026.

  75. Fogel R, Limson J, Seshia AA. Acoustic biosensors. Essays Biochem. 2016; https://doi.org/10.1042/EBC20150011.

  76. Toma H, Zamarion VM, Toma SH, Araki K. The coordination chemistry at gold nanoparticles. J Braz Chem Soc. 2010; https://doi.org/10.1590/S0103-50532010000700003.

  77. Mohanty G, Sahoo BK, Akhtar J. Comparative analysis for reflectivity of graphene based SPR biosensor. Opt Quant Electron. 2015; https://doi.org/10.1007/s11082-014-0057-2.

  78. Hedayati MK, Faupel F, Elbahri M. Review of plasmonic nanocomposite metamaterial absorber. Materials. 2014; https://doi.org/10.3390/ma7021221.

  79. Willets K, Duyne R. Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem. 2007; https://doi.org/10.1146/annurev.physchem.58.032806.104607.

  80. Zhu C, Yang G, Li H, Du D, Lin Y. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem. 2015; https://doi.org/10.1021/ac5039863.

  81. Lu Y, Yao Y, Zhang Q, Zhang D, Zhuang S, Li H, et al. Olfactory biosensor for insect semiochemicals analysis by impedance sensing of odorant-binding proteins on interdigitated electrodes. Biosens Bioelectron. 2015; https://doi.org/10.1016/j.bios.2014.09.098.

  82. Brattoli M, Gennaro G, Pinto V, Loitile AD, Lovascio S, Penza M. Odour detection methods: olfactometry and chemical sensors. Sensors. 2011; https://doi.org/10.3390/s110505290.

  83. Turner AP. Biosensors: sense and sensibility. Chem Soc Rev. 2013; https://doi.org/10.1039/c3cs35528d.

  84. Olsson SB, Hansson BS. Electroantennogram and single sensillum recording in insect antennae. Methods Mol Biol. 2013; https://doi.org/10.1007/978-1-62703-619-1_11.

  85. Dai C, Choi S. Technology and applications of microbial biosensor. Open J Appl Biosens. 2013; https://doi.org/10.4236/ojab.2013.23011.

  86. Klein U. Sensillum-lymph proteins from antennal olfactory hairs of the moth Antheraea polyphemus (Saturniidae). Insect Biochem. 1987; https://doi.org/10.1016/0020-1790(87)90093-X.

  87. Vogt RG, Riddiford LM. Pheromone binding and inactivation by moth antennae. Nature. 1981;293:161–3.

    Article  CAS  PubMed  Google Scholar 

  88. Wojtasek H, Leal WS. Conformational change in the pheromone-binding protein from Bombyx mori induced by pH and by interaction with membranes. J Biol Chem. 1999; https://doi.org/10.1074/jbc.274.43.30950.

  89. Leal W, Shi X, Liang D, Schal C, Meinwald JS. Application of chiral gas chromatography with electroantennographic detection to the determination of the stereochemistry of a cockroach sex pheromone. Proc Natl Acad Sci U S A. 1995; https://doi.org/10.1073/pnas.92.4.1033.

  90. Lu Y, Li H, Zhuang S, Zhang Q, Zhang D, Zho J, et al. Olfactory biosensor using odorant-binding proteins from honeybee: ligands of floral odors and pheromones detection by electrochemical impedance. Sensors Actuators B Chem. 2014; https://doi.org/10.1016/j.snb.2013.11.045.

  91. Mitsuno H, Sakurai T, Namiki S, Mitsuhashi H, Kanzaki R. Novel cell-based odorant sensor elements based on insect odorant receptors. Biosens Bioelectron. 2015; https://doi.org/10.1016/j.bios.2014.10.026.

  92. Vickers NJ, Christensen TA, Baker TC, Hildebrand JG. Odour-plume dynamics influence the brain’s olfactory code. Nature. 2001; https://doi.org/10.1038/35068559.

  93. Schott M, Wehrenfennig C, Gasch T, Vilcinskas A. Insect antenna-based biosensors for in situ detection of volatiles. Adv Biochem Eng Biotechnol. 2013; https://doi.org/10.1007/10_2013_210.

  94. Muñoz L, Dimov N, Carot-Sans G, Bula WP, Guerrero A, Gardeniers HJGE. Mimicking insect communication: release and detection of pheromone, biosynthesized by an alcohol acetyl transferase immobilized in a microreactor. PLoS One. 2012; https://doi.org/10.1371/journal.pone.0047751.

  95. Zohora SE, Khan AM, Hundewale N. Chemical sensors employed in electronic noses: a review. Int J Soft Comput Eng. 2013; https://doi.org/10.1007/978-3-642-31600-5_18.

  96. Lan YB, Zheng XZ, Westbrook JK, Lopez J, Lacey R, Hoffmann WC. Identification of stink bugs using an electronic nose. J Bionic Eng. 2008; https://doi.org/10.1016/S1672-6529(08)60090-6.

  97. Henderson WG, Khalilian A, Han YJ, Greene JK, Degenhardt DC. Detecting stink bugs/damage in cotton utilizing a portable electronic nose. Compt Electron Agric. 2010; https://doi.org/10.1016/j.compag.2009.09.019.

  98. Vashist S. A review of microcantilevers for sensing applications. J Nanotechnol. 2007; https://doi.org/10.2240/azojono0115.

  99. Tamayo J, Kosaka PM, Ruz JJ, San Paulo A, Calleja M. Biosensors based on nanomechanical systems. Chem Soc Rev. 2013; https://doi.org/10.1039/c2cs35293a.

  100. Grieshaber D, MacKenzie R, Vörös J, Reimhult E. Electrochemical biosensors—sensor principles and architectures. Sensors. 2008;8(3):1400–58.

  101. Pradhan N, Singh S, Oiha N, Shrivastava BA, Rai V, Bose S. Facets of nanotechnology as seen in food processing, packaging, and preservation industry. Biomed Res Int. 2015; https://doi.org/10.1155/2015/365672.

  102. Farahani H, Wagiran R, Hamidon MN. Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors. 2014; https://doi.org/10.3390/s140507881.

  103. Ramos D, Calleja M, Mertens J, Zaballos A, Tamayo J. Mensuarement of the mass and rigidity of absorbates on a microcantilever sensor. Sensors. 2007; https://doi.org/10.3390/s7091834.

  104. Liu Y, Wang H, Qin H, Zhao W, Wang P. Geometry and profile of microcantilevers for sensitivity enhancement in sensing applications. Sensors Mater. 2017;29(6):689–98.

    Google Scholar 

  105. Suresh M, Vasa NJ, Agarwal V, Chandapillai J. UV photo-ionization based asymmetric field differential ion mobility sensor for trace gas detection. Sensors Actuators B Chem. 2014; https://doi.org/10.1016/j.snb.2014.01.008.

  106. Steffens C, Manzoli A, Oliveira JE, Leite FL, Correa DS, Herrmann PSP. Bio-inspired sensor for insect pheromone analysis based on polyaniline functionalized AFM cantilever sensor. Sensors Actuators B Chem. 2014; https://doi.org/10.1016/j.snb.2013.10.053.

  107. Sasuga S, Abe R, Nikaido O, Kiyosaki S, Sekiguchi H, Ikai A, et al. Interaction between pheromone and its receptor of the fission yeast Schizosaccharomyces pombe examined by a force spectroscopy study. J Biomed Biotechnol. 2012; https://doi.org/10.1155/2012/804793.

  108. Fuhrmann A, Schoening JC, Anselmetti D, Staiger D, Ros R. Quantitative analysis of single-molecule RNA–protein interaction. Biophys J. 2009; https://doi.org/10.1016/j.bpj.2009.03.022.

  109. Bosshart PD, Casagrande F, Frederix PLTM, Ratera M, Bippes CA, Müller DJ, et al. High-throughput single-molecule force spectroscopy for membrane proteins. Nanotechnol. 2008; https://doi.org/10.1088/0957-4484/19/38/384014.

  110. Moitra P, Bhagat D, Pratap R, Bhattacharya S. A novel bio-engineering approach to generate an eminent surface-functionalized template for selective detection of female sex pheromone of Helicoverpa armigera. Sci Rep. 2016; https://doi.org/10.1038/srep37355.

Download references

Acknowledgements

The authors would like to thank CNPq, CAPES, FAPERGS, and FINEP for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clarice Steffens.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brezolin, A.N., Martinazzo, J., Muenchen, D.K. et al. Tools for detecting insect semiochemicals: a review. Anal Bioanal Chem 410, 4091–4108 (2018). https://doi.org/10.1007/s00216-018-1118-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1118-3

Keywords

Navigation