Skip to main content
Log in

Atomistic Calculation of the Melting Point of the High-Entropy Cantor Alloy CoCrFeMnNi

  • PHYSICAL CHEMISTRY
  • Published:
Doklady Physical Chemistry Aims and scope Submit manuscript

Abstract

The melting point of the high-entropy Cantor alloy CoCrFeMnNi was calculated by the classical molecular dynamics method. Interatomic potential as a set of artificial neural networks was used for simulation of this type for the first time. Neural network coefficients were optimized using machine learning technique with ab initio molecular dynamics data. Ab initio molecular dynamics simulation was carried out for a wide temperature range using the same initial crystalline state. The initial state for ab initio simulations was a special quasi-random structure optimized on pairs of the nearest neighbors. The two-phase method based on the movement of phase boundary in a crystal–melt system was used to calculate the melting point. It should be noted that, although the training set did not contain explicit two-phase configurations, the computed melting point proved to be in a satisfactory agreement with available experimental data. Thus, the melting point of the high-entropy CoCrFeMnNi alloy was calculated without the use of empirical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Otto, F., Yang, Y., Bei, H., and George, E.P., Acta Mater., 2013, vol. 61, no. 7, pp. 2628–2638. https://doi.org/10.1016/j.actamat.2013.01.042

    Article  CAS  Google Scholar 

  2. Zhang, W., Tang, R., Yang, Z.B., Liu, C.H., Chang, H., Yang, J.J., Liao, J.L., Yang, Y.Y., and Liu, N., J. Nucl. Mater., 2018, vol. 512, pp. 15–24. https://doi.org/10.1016/j.jnucmat.2018.10.001

    Article  CAS  Google Scholar 

  3. Tunes, M.A., Vishnyakov, V.M., and Donnelly, S.E., Thin Solid Films, 2018, vol. 649, pp. 115–120. https://doi.org/10.1016/j.tsf.2018.01.041

    Article  CAS  Google Scholar 

  4. Kareer, A., Waite, J.C., Li, B., Couet, A., Armstrong, D.E.J., and Wilkinson, A.J., J. Nucl. Mater., 2019, vol. 526, art. no. 151744. https://doi.org/10.1016/j.jnucmat.2019.151744

    Article  Google Scholar 

  5. Popescu, G., Ghiban, B., Popescu, C.A., Rosu, L., Truscă, R., Carcea, I., Soare, V., Dumitrescu, D., Constantin, I., Olaru, M.T., and Carlan, B.A., IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 400, no. 2, art. no. 022049. https://doi.org/10.1088/1757-899X/400/2/022049

  6. Castro, D., Jaeger, P., Baptista, A.C., and Oliveira, J.P., Metals, 2021, vol. 11, no. 4, art. no. 648. https://doi.org/10.3390/met11040648

    Article  CAS  Google Scholar 

  7. Yuan, Y., Wu, Y., Yang, Z., Liang, X., Lei, Zh., Huang, H., Wang, H., Liu, X., An, K., Wu, W., Lu, Zh., Mater. Res. Lett., 2019, vol. 7, no. 6, pp. 225–231. https://doi.org/10.1080/21663831.2019.1584592

    Article  CAS  Google Scholar 

  8. Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O., Science, 2014, vol. 345, no. 6201, pp. 1153–1158. https://doi.org/10.1126/science.1254581

    Article  CAS  PubMed  Google Scholar 

  9. Senkov, O.N., Miracle, D.B., Chaput, K.J., and Couzinie, J.-P., J. Mater. Res., 2018, vol. 33, no. 19, pp. 3092–3128. https://doi.org/10.1557/jmr.2018.153

  10. Li, K., Khanna, R., Zhang, J., Li, G., Li, H., Jiang, C., Sun, M., Wang, Z., Bu, Y., Bouhadja, M., Liu, Z., and Barati, M., J. Mol. Liq., 2019, vol. 290, art. no. 111204. https://doi.org/10.1016/j.molliq.2019.111204

  11. Etesami, S.A. and Asadi, E., J. Phys. Chem. Solids, 2018, vol. 112, pp. 61–72. https://doi.org/10.1016/j.jpcs.2017.09.001

    Article  CAS  Google Scholar 

  12. Baskes, M.I., Phys. Rev. Lett., 1987, vol. 59, no. 23, p. 2666. https://doi.org/10.1103/PhysRevLett.59.2666

    Article  CAS  PubMed  Google Scholar 

  13. Hong, Q.-J. and Van De Walle, A., Phys. Rev. B, 2015, vol. 92, art. no. 20104. https://doi.org/10.1103/PhysRevB.92.020104

    Article  CAS  Google Scholar 

  14. Mishin, Y., Acta Mater., 2021, vol. 214, art. no. 116980. https://doi.org/10.1016/j.actamat.2021.116980

    Article  CAS  Google Scholar 

  15. Zunger, A., Wei, S.-H., Ferreira, L.G., and Bernard,  J.E., Phys. Rev. Lett., 1990, vol. 65, no. 3, pp. 353–356. https://doi.org/10.1103/PhysRevLett.65.353

    Article  CAS  PubMed  Google Scholar 

  16. Van De Walle, A., Tiwary, P., De Jong, M., Olmsted, D.L., Asta, M., Dick, A., Shin, D., Wang, Y., Chen, L.-Q., and Liu, Z.-K., CALPHAD, 2013, vol. 42, pp. 13–18. https://doi.org/10.1016/j.calphad.2013.06.006

    Article  CAS  Google Scholar 

  17. Zaddach, A.J., Niu, C., Koch, C.C., and Irving, D.L., JOM, 2013, vol. 65, no. 12, pp. 1780–1789. https://doi.org/10.1007/s11837-013-0771-4

    Article  CAS  Google Scholar 

  18. Gao, M.C., Niu, C., Jiang, C., and Irving, D.L., in: High-Entropy Alloys, Gao, M., Yeh, J.W., Liaw, P., Zhang, Y., Eds., Cham: Springer, 2016, pp. 333–368.

    Book  Google Scholar 

  19. Zhang, Y. and Maginn, E.J., J. Chem. Phys., 2012, vol. 136, no. 14, p. 144116. https://doi.org/10.1063/1.3702587

    Article  CAS  PubMed  Google Scholar 

  20. Luo, S.-N., Strachan, A., and Swift, D.C., J. Chem. Phys., 2004, vol. 120, no. 24, pp. 11640–11649. https://doi.org/10.1063/1.1755655

    Article  CAS  PubMed  Google Scholar 

  21. Phillpot, S.R., Lutsko, J.F., Wolf, D., and Yip, S., Phys. Rev. B, 1989, vol. 40, no. 5, p. 2831. https://doi.org/10.1103/PhysRevB.40.2831

    Article  CAS  Google Scholar 

  22. Morris, J.R., Wang, C.Z., Ho, K.M., and Chan, C.T., Phys. Rev. B, vol. 49, no. 5. https://doi.org/10.1103/PhysRevB.49.3109

  23. Hoover, W.G. and Ree, F.H., J. Chem. Phys., 2004, vol. 47, no. 12, pp. 4873–4878. https://doi.org/10.1063/1.1701730

    Article  Google Scholar 

  24. Frenkel, D. and Ladd, A.J.C., J. Chem. Phys., 1998, vol. 81, no. 7, pp. 3188–3193. https://doi.org/10.1063/1.448024

    Article  Google Scholar 

  25. Grochola, G., J. Chem. Phys., 2004, vol. 120, no. 5, pp. 2122–2126. https://doi.org/10.1063/1.1637575

    Article  CAS  PubMed  Google Scholar 

  26. Balyakin, I.A., Yuryev, A.A., Gelchinski, B.R., and Rempel, A.A., J. Phys. Condens. Matter, 2020, vol. 32, no. 21, art. no. 214006. https://doi.org/10.1088/1361‑648X/ab6f87

    Article  CAS  PubMed  Google Scholar 

  27. Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B., Mater. Sci. Eng., A, 2004, vols. 375–377, nos. 1–2, pp. 213–218. https://doi.org/10.1016/j.msea.2003.10.257

    Article  CAS  Google Scholar 

  28. Van de Walle, A., Asta, M., and Ceder, G., CALPHAD, 2002, vol. 26, no. 4, pp. 539–553. https://doi.org/10.1016/S0364-5916(02)80006-2

    Article  CAS  Google Scholar 

  29. Kresse, G. and Furthmüller, J., Phys. Rev. B, 1996, vol. 54, no. 16, p. 11169. https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  30. Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 1996, vol. 77, no. 18, p. 3865. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  31. Wang, H., Zhang, L., and Han, J., E W., Comput. Phys. Commun., 2018, vol. 228, pp. 178–184. https://doi.org/10.1016/j.cpc.2018.03.016

    Article  CAS  Google Scholar 

  32. Zhang, L., Han, J., Wang, H., Saidi, W.A., Car, R., and E, W., 32nd Conference on Neural Information Proces-sing Systems (NeurIPS 2018), Montréal, Canada, pp. 4441–4451.

  33. Larsen, P.M., Schmidt, S., and Schiøtz, J.R., Model. Simul. Mater. Sci. Eng., 2016, vol. 24, no. 5. https://doi.org/10.1088/0965-0393/24/5/055007

  34. Stukowski, A., Model. Simul. Mater. Sci. Eng., 2009, vol. 18, no. 1, art. no. 015012. https://doi.org/10.1088/0965-0393/18/1/015012

    Article  Google Scholar 

  35. Vaidya, M., Trubel, S., Murty, B.S., Wilde, G., and Divinski, S.V., J. Alloys Compd., 2016, vol. 688, pp. 994–1001. https://doi.org/10.1016/j.jallcom.2016.07.239

    Article  CAS  Google Scholar 

  36. Galvin, C.O.T., Grimes, R.W., and Burr, P.A., Comput. Mater. Sci., 2021, vol. 186, p. 110016. https://doi.org/10.1016/j.commatsci.2020.110016

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was carried out using the Uran supercomputer of the Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences.

Funding

The study was supported by the Russian Foundation for Basic Research within the framework of the research project no. 20-33-90171.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Balyakin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Z. Svitanko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balyakin, I.A., Rempel, A.A. Atomistic Calculation of the Melting Point of the High-Entropy Cantor Alloy CoCrFeMnNi. Dokl Phys Chem 502, 11–17 (2022). https://doi.org/10.1134/S0012501622010018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012501622010018

Keywords:

Navigation