Skip to main content
Log in

Prediction of the Phase Composition of High-Entropy Аlloys Based on Cr–Nb–Ti–V–Zr Using the Calphad Method

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Based on the CALPHAD method, a description of the Cr–Nb–Ti–V–Zr alloy system was formulated and temperature dependences of changes in the phase composition of high-entropy CrxNbTiVZr alloys (for x = 0.5, 0.75, 1, and 1.25) were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. V. F. Gorban’, N. A. Krapivka, and S. A. Firstov, “High-entropy alloys: Interrelations between electron concentration, phase composition, lattice parameter, and properties,” Phys. Met. Metallogr. 118, 970–981 (2017).

    Article  Google Scholar 

  2. V. F. Gorban, N. A. Krapivka, S. A. Firstov, and D. V. Kurilenko, “Role of various parameters in the formation of the physicomechanical properties of high-entropy alloys with bcc lattices,” Phys. Met. Metallogr. 119, 477–481 (2018).

    Article  Google Scholar 

  3. N. I. Kourov, V. G. Pushin, A. V. Korolev, Yu. V. Knyazev, M. V. Ivchenko, and Yu. M. Ustyugov, “Peculiar features of physical properties of the rapidly quenched AlCrFeCoNiCu high-entropy alloy,” J. Alloys Compd. 636, 304–309 (2015).

    Article  Google Scholar 

  4. M. V. Ivchenko, V. G. Pushin, A. N. Uksusnikov, N. Wanderka, and N. I. Kourov, “Specific features of cast high-entropy AlCrFeCoNiCu alloys produced by ultrarapid quenching from the melt,” Phys. Met. Metallogr. 114, 503–513 (2013).

    Article  Google Scholar 

  5. M. V. Ivchenko, V. G. Pushin, A. N. Uksusnikov, and N. Wanderka, “Microstructure features of high-entropy equiatomic cast AlCrFeCoNiCu alloys,” Phys. Met. Metallogr. 114, 514–520 (2013).

    Article  Google Scholar 

  6. O. N. Senkov, G. B. Wilks, J. M. Scott, and D. B. Miracle, “Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys,” Intermetallics 19, 698–706 (2011).

    Article  Google Scholar 

  7. O. N. Senkov, C. Woodward, and D. B. Miracle, “Microstructure of aluminum-containing refractory high-entropy alloys,” JOM 66, 2030–2042 (2014).

    Article  Google Scholar 

  8. C. Li, Y. Xue, M. Hua, T. Cao, L. Ma, and L. Wang, “Microstructure and mechanical properties of AlxSi0.2CrFeCoNiCu1 – x high entropy alloys,” Mater. Des. 90, 601–609 (2016).

    Article  Google Scholar 

  9. E. Eshed, N. Larianovsky, A. Kovalevsky, V. Popov, Jr., I. Gorbachev, V. Popov, and A. Katz-Demyanetz, “Microstructural evolution and phase formation in 2nd-generation refractory-based high entropy alloys,” Materials 11, 175–187 (2018).

    Article  Google Scholar 

  10. F. Zhang, C. Zhang, S. L. Chen, J. Zhu, W. S. Cao, and U. R. Kattner, “An understanding of high entropy alloys from phase diagram calculations, “CALPHAD 45, 1–10 (2014).

    Article  Google Scholar 

  11. H. L. Lukas, S. G. Fries, and B. Sundman, Computational Thermodynamics: The Calphad Method (Cambridge University Press, 2007),

    Book  Google Scholar 

  12. M. Hillert and L.-I. Staffonsson, “The regular solution model for stoichiometric phases and ionic melts,” Acta Chem. Scand. 24, 3618–3626 (1970).

    Article  Google Scholar 

  13. B. Sundman and J. Agren, “A regular solution model for phase with several components and sublattices, suitable for computer applications,” J. Phys. Chem. Solids 42, 297–301 (1981).

    Article  Google Scholar 

  14. A. T. Dinsdale, “SGTE data for pure elements,” CALPHAD 15, 317–425 (1991).

    Article  Google Scholar 

  15. J. Y. Lee, J. H. Kim, S. I. Park, and H. M. Lee, “Phase equilibrium of the Ti–Cr–V ternary system in the non-burning β-Ti alloy region,” J. Alloys Compd. 291, 229–238 (1999).

    Article  Google Scholar 

  16. J. Pavlů, J. Vřešt’ál, and M. Šob, “Thermodynamic modeling of Laves phases in the Cr–Hf and Cr–Ti systems: Reassessment using first-principles results,” CALPHAD 34, 215–221 (2010).

    Article  Google Scholar 

  17. W. D. Zhuang, J. Y. Shen, Y. Q. Liu, L. Ling, S. L. Shang, Y. Du, and J. C. Schuster, “Thermodynamic optimization of the Cr–Ti system,” Z. Metallkd. 91, 121–127 (2000).

    Google Scholar 

  18. D. M. Cupid, M. J. Kriegel, O. Fabrichnaya, F. Ebrahimi, and H. J. Seifert, “Thermodynamic assessment of the Cr–Ti and first assessment of the Al–Cr–Ti systems,” Intermetallics 19, 1222–1235 (2011).

    Article  Google Scholar 

  19. N. Saunders, “System Cr–Ti,” In Thermochemical Database for Light Metal Alloys (Volume 2), Ed. by A. Ansara, T. Dinsdale, and M. H. Rand (Office for Official Publications of the European Communities, Luxembourg, 1998).

    Google Scholar 

  20. G. Ghosh, “Thermodynamic and kinetic modeling of the Cr–Ti–V system,” J. Phase Equilib. 23, 310–328 (2002).

    Article  Google Scholar 

  21. B.-J. Lee and D. N. Lee, “A thermodynamic evaluation of the Fe–Cr–V–C system,” J. Phase Equilib. 13, 349–364 (1992).

    Article  Google Scholar 

  22. C. Guo, C. Li, X. Zheng, and Zh. Du, “Thermodynamic modeling of the Fe–Ti–V system,” CALPHAD 38, 155–160 (2012).

    Article  Google Scholar 

  23. J. Cui, C. Guo, L. Zou, Ch. Li, and Zh. Du, “Experimental investigation and thermodynamic modeling of the Ti–V–Zr system,” CALPHAD 55 (Part 2), 189–198 (2016).

    Article  Google Scholar 

  24. C. Servant, “Thermodynamic assessments of the phase diagrams of the hafnium–vanadium and vanadium–zirconium systems,” J. Phase Equilib. Diffus. 26, 39–49 (2005).

    Article  Google Scholar 

  25. X.-S. Zhao, G.-H. Yuan, M.-Y. Yao, Q. Yue, and J.‑Y. Shen, “First-principles calculations and thermodynamic modeling of the V–Zr system,” CALPHAD 36, 163–168 (2012).

    Article  Google Scholar 

  26. H.-J. Lu, W.-B. Wang, N. Zou, J.-Y. Shen, X.-G. Lu, and Y.-L. He, “Thermodynamic modeling of Cr–Nb and Zr–Cr with extension to the ternary Zr–Nb–Cr system,” CALPHAD 50, 134–143 (2015).

    Article  Google Scholar 

  27. C. Schmetterer, A. Khvan, A. Jacob, B. Hallstedt, and T. Markus, “A new theoretical study of the Cr–Nb system,” J. Phase Equilib. Diffus. 35, 434–444 (2014).

    Article  Google Scholar 

  28. Y. Peng, P. Zhou, M. Bu, W. Zhang, and Y. Du, “A thermodynamic evaluation of the C–Cr–Nb system,” CALPHAD 53, 10–19 (2016).

    Article  Google Scholar 

  29. J. Pavlů, J. Vřešt’ál, and M. Šob, “Re-modeling of Laves phases in the Cr–Nb and Cr–Ta systems using first-principles results,” CALPHAD 33, 179–186 (2009).

    Article  Google Scholar 

  30. J. G. Costa Neto, S. G. Fries, and H. L. Lukas, “Thermodynamic optimisation of the Nb–Cr system,” CALPHAD 17, 219–228 (1993).

    Article  Google Scholar 

  31. A. Fernandez-Guillermet, “Thermodynamic analysis of the stable phases in the Zr–Nb system and calculation of the phase diagram,” Z. Metallkd. 82, 478–487 (1991).

    Google Scholar 

  32. J. Pavlů, J. Vřešt’ál, and M. Šob, “Stability of Laves phases in the Cr–Zr system,” CALPHAD 33, 382–387 (2009).

    Article  Google Scholar 

  33. Y. Yang, L. Tan, H. Bei, and J. T. Busby, “Thermodynamic modeling and experimental study of the Fe–Cr–Zr system,” J. Nucl. Mater. 441, 190–202 (2013).

    Article  Google Scholar 

  34. K. C. Hari Kumar, P. Wollants, and L. Delaey, “Thermodynamic calculation of Nb–Ti–V phase diagram,” CALPHAD 18, 71–79 (1994).

    Article  Google Scholar 

  35. N. Saunders, “System Nb–Ti,” in Thermochemical Database for Light Metal Alloys (Volume 2), Ed. by A. Ansara, T. Dinsdale, and M. H. Rand (Office for Official Publications of the European Communities, Luxembourg, 1998).

    Google Scholar 

  36. B.-J. Lee, “Thermodynamic assessment of the Fe–Nb–Ti–C–N system,” Metall. Mater. Trans. A 32A, 2423–2439 (2001).

    Article  Google Scholar 

  37. Y. Zhang, H. Liu, and Zh. Jin, “Thermodynamic assessment of the Nb–Ti system,” CALPHAD 25, 305–317 (2001).

    Article  Google Scholar 

  38. H. Liang and Y. A. Chang, “Thermodynamic modeling of the Nb–Si–Ti ternary system,” Intermetallics 7, 561–570 (1999).

    Article  Google Scholar 

  39. A. V. Khvan, K. Chang, and B. Hallstedt, “Thermodynamic assessment of the Fe–Nb–V system,” CALPHAD 43, 143–148 (2013).

    Article  Google Scholar 

Download references

FUNDING

The work was performed in the framework of the state task according to the theme “Spin,” no. AAAA-A18-118020290104-2 with the support of the program of basic research of the Ural Branch, Russian Academy of Sciences (project no. 18-10-2-37).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Gorbachev.

Additional information

Translated by S. Gorin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbachev, I.I., Popov, V.V., Katz-Demyanetz, A. et al. Prediction of the Phase Composition of High-Entropy Аlloys Based on Cr–Nb–Ti–V–Zr Using the Calphad Method. Phys. Metals Metallogr. 120, 378–386 (2019). https://doi.org/10.1134/S0031918X19040069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X19040069

Keywords:

Navigation