Skip to main content
Log in

New Donor–Acceptor Random Terpolymers with Wide Absorption Spectra of 300–1000 nm for Photovoltaic Applications

  • PHYSICAL CHEMISTRY
  • Published:
Doklady Physical Chemistry Aims and scope Submit manuscript

Abstract

The development of conjugated polymers with wide absorption spectra is imperative to achieve high efficiency in polymer solar cells (PSCs), since most of these polymers usually absorb only a limited range of the solar spectrum. Random terpolymers consisting of three blocks (one electron-donor and two electron-acceptor blocks) are promising p-type polymers for PSCs, because the inclusion of a third block in the polymer macromolecules provides a synergistic effect of physical properties, such as absorption capacity, charge transfer, HOMO/LUMO energy levels, and photovoltaic characteristics. In this regard, we have developed and synthesized random terpolymers consisting of two different chromophores (DPP and BFCTP) with complementary absorption spectra as co-acceptor blocks in conjugated donor–acceptor (D–A) copolymers. Random copolymers exhibit both broad absorption and low HOMO levels favoring short-circuit current and idle voltage in PSCs. It is expected that new terpolymers consisting of one electron-donor unit and two electron-acceptor moieties will make a significant contribution to the development of highly efficient PSCs. It is expected that new ternary copolymers consisting of one electron-donor unit and two electron-acceptor fragments will make a significant contribution to the development of high-performance PSСs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. He, Z., Xiao, B., Liu, F., Wu, H., Yang, Y., Xiao, S., Wang, C., Russell, T.P., and Cao, Y., Nat. Photonics, 2015, vol. 9, pp. 174–179. https://doi.org/10.1038/nphoton.2015.6

    Article  CAS  Google Scholar 

  2. Yuan, J., Zhang, Y., Zhou, L., Zhang, G., Yip, H.-L., Lau, T.-K., Lu, X., Zhu, C., Peng, H., Johnson, P.A., Leclerc, M., Cao, Y., Ulanski, J., Li, Y., and Zou, Y., Joule, 2019, vol. 3, no. 4, pp. 1140–1151. https://doi.org/10.1016/j.joule.2019.01.004

    Article  CAS  Google Scholar 

  3. Liu, D., Yang, B., Jang, B., Xu, B., Zhang, S., He, C., Woo, H.Y., and Hou, J., Energy Environ. Sci., 2017, vol. 10, pp. 546–551. https://doi.org/10.1039/C6EE03489F

    Article  CAS  Google Scholar 

  4. Dang, D., Chen, W., Himmelberger, S., Tao, Q., Lundin, A., Yang, R., Zhu, W., Salleo, A., Müller, C., and Wang, E., Adv. Energy Mater., 2014, vol. 4, p. 1400680. https://doi.org/10.1002/aenm.201400680

    Article  CAS  Google Scholar 

  5. Meng, L., Zhang, Y., Wan, X., Li, C., Zhang, X., Wang, Y., Ke, X., Xiao, Z., Ding, L., Xia, R., Yip, H., Cao, Y., and Chen, Y., Science, 2018, vol. 361, pp. 1094–1098. https://doi.org/10.1126/science.aat2612

    Article  CAS  PubMed  Google Scholar 

  6. Liu, T., Luo, Z., Chen, Y., Yang, T., Xiao, Y., Zhang, G., Ma, R., Lu, X., Zhan, C., Zhang, M., Yang, C., Li, Y., Yao, J., and Yan, H., Energy Environ. Sci., 2019, vol. 12, pp. 2529–2536. https://doi.org/10.1039/c9ee01030k

    Article  CAS  Google Scholar 

  7. Luo, H., Liu, Z., and Zhang, D., Polym. J., 2018, vol. 50, pp. 21–31. https://doi.org/10.1038/pj.2017.53

    Article  CAS  Google Scholar 

  8. Huo, L., Xue, X., Liu, T., Xiong, W., Qi, F., Fan, B., Xie, D., Liu, F., Yang, C., and Sun, Y., Chem. Mater., 2018, vol. 30, pp. 3294–3300. https://doi.org/10.1021/acs.chemmater.8b00510

    Article  CAS  Google Scholar 

  9. Nielson, C.B., Fraser, J.M., Schroeder, B.C., Du, J., White, A.J., Zhang, W., and McCulloch, I., Org. Lett., 2011, vol. 13, pp. 2414–2417. https://doi.org/10.1021/ol200643z

    Article  CAS  Google Scholar 

  10. Yi, Z., Wang, S., and Liu, Y., Adv. Mater., 2015, vol. 27, p. 3589. https://doi.org/10.1002/adma.201500401

    Article  CAS  PubMed  Google Scholar 

  11. Kuklin, C.A., Konstantinov, I.O., Peregudov, A.S., Ostapov, I.E., Makhaeva, E.E., Khokhlov, A.R., and Keshtov, M.L., Dokl. Chem., 2018, vol. 482, pp. 207–211. https://doi.org/10.1134/S0012500818090070

    Article  CAS  Google Scholar 

  12. Kini, G.P., Hoang, Q.V., Song, Ch.E., Lee, S.K., Shin, W.S., So, W.-W., Uddin, M.A., Woo, H.Y., and Lee, J.-Ch., Polym. Chem., 2017, vol. 8, pp. 3622–3631. https://doi.org/10.1039/C7PY00696A

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

NMR spectra were recorded and elemental analysis was carried out with the support of the Ministry of Science and Higher Education of the Russian Federation using the scientific equipment of the Center for the Study of Molecular Structures at the Institute of Organoelement Compounds, RAS.

Funding

This study was supported by the Russian Foundation for Basic Research (project nos. 18-53-80066 and 18-29-23004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Keshtov.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshtov, M.L., Kuklin, S.A., Zou, Y. et al. New Donor–Acceptor Random Terpolymers with Wide Absorption Spectra of 300–1000 nm for Photovoltaic Applications. Dokl Phys Chem 495, 196–200 (2020). https://doi.org/10.1134/S0012501620120040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012501620120040

Keywords:

Navigation