Skip to main content
Log in

Enzymatic and Antimicrobial Activities in Polar Strains of Microscopic Soil Fungi

  • Published:
Doklady Biological Sciences Aims and scope Submit manuscript

Abstract

Potential to produce inducible enzymes (several hydrolases and oxidases) and antibiotics as secondary metabolites was studied in soil micromycete strains from the Arctic (Franz Josef Land and Novaya Zemlya) and Antarctica (the oases Thala Hills, Larsemann Hills, Schirmacher, and Marie Byrd Land). Maximal esterase activity was observed in strains of two typical Antarctic species, Hyphozyma variabilis 218 and Thelebolus ellipsoideus 210 (51 and 29 nmol FDA/((g mycelium h), respectively). Cellulolytic activity was maximal (89 µmol glucose/mg biomass) in Ascochyta pisi 192. Extracellular phenol oxidase (laccase) and peroxidase activities were not detected in the strains examined. Antibacterial activity toward Bacillus subtilis ATCC 6633 was observed in 75% of the Antarctic micromycete strains. Higher-activity strains were isolated from organic-rich moist habitats with a moss or lichen cover. Maximal activities were displayed by Paecilomyces marquandii 166, Penicillium janczewskii 165, Penicillium roseopurpureum 169, and Thelebolus ellipsoideus 210. Antagonistic activity toward Antarctic bacterial strains was shown by 77% of the microfungal strains examined. Maximal inhibition was observed with strains of the typical Antarctic species Antarctomyces psychrotrophicus MT303855 and the eurytopic species Sarocladium kiliense MT303856. Antimycotic activity was observed in 42% of the strains. Both activities were detected in 38% of the Antarctic strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Abrashev, R., Feller, G., Kostadinova, N., et al., Production, purification, and characterization of a novel cold-active superoxide dismutase from the Antarctic strain Aspergillus glaucus 363, Fungal Biol., 2016, vol. 120, no. 5, pp. 679–689.

    Article  CAS  PubMed  Google Scholar 

  2. Al-Maqtari, Q.A., Waleed, A.-A., and Mahdi, A.A., Cold-active enzymes and their applications in industrial fields - A review, Int. J. Res. Agric. Sci., 2019, vol. 6, no. 4, pp. 2348–3997.

    Google Scholar 

  3. Arenz, B.E. and Blanchette, R.A., Distribution and abundance of soil fungi in Antarctica at sites on the Peninsula, Ross Sea Region and McMurdo Dry Valleys, Soil Biol. Biochem., 2011, vol. 43, no. 2, pp. 308–315.

    Article  CAS  Google Scholar 

  4. Bell, T.H., Callender, K.L., Whyte, L.G., et al., Microbial competition in polar soils: a review of an understudied but potentially important control on productivity, Biology, 2013, vol. 2, no. 2, pp. 533–554.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bhange, K., Chaturvedi, V., and Bhatt, R., Simultaneous production of detergent stable keratinolytic protease, amylase and biosurfactant by Bacillus subtilis PF1 using agro industrial waste, Biotechnol. Rep., 2016, vol. 10, pp. 94–104.

    Article  Google Scholar 

  6. Brakhage, A.A., Regulation of fungal secondary metabolism, Nat. Rev. Microbiol., 2013, vol. 11, no. 1, pp. 21–32.

    Article  CAS  PubMed  Google Scholar 

  7. Bratchkova, A. and Ivanova, V., Bioactive metabolites produced by microorganisms collected in Antarctica and the Arctic, Biotechnol. Biotechnol. Equip., 2011, vol. 25, no. 1, pp. 1–7.

    Article  Google Scholar 

  8. Castro, P., Mendoza, L., Vásquez, C., et al., Antifungal activity against Botrytis cinerea of 2,6-dimethoxy-4-(phenylimino) cyclohexa-2,5-dienone derivatives, Molecules, 2019, vol. 24, no. 4, p. 706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Corry, J.E., Curtis, G.D., and Baird, R.M., Handbook of culture media for food and water microbiology, R. Soc. Chem., 2011.

    Book  Google Scholar 

  10. Cowan, D.A., Makhalanyane, T.P., Dennis, P.G., et al., Microbial ecology and biogeochemistry of continental Antarctic soils, Front. Microbiol., 2014, vol. 5, p. 154.

    Article  PubMed  PubMed Central  Google Scholar 

  11. De Hoog, G.S., Gottlich, E., Platas, G., Genilloud, O., et al., Evolution, taxonomy and ecology of the genus Thelebolus in Antarctica, Stud. Mycol., 2005, vol. 51, pp. 33–76.

    Google Scholar 

  12. Domsch, K.H., Gams, W., and Anderson, T.H., Compendium of Soil Fungi, Gams, W., Ed., Eching: IHW, 2007.

  13. Dzoyem, et al., Cytotoxicity, antioxidant, and antibacterial activity of four compounds produced by an endophytic fungus Epicoccum nigrum associated with Entada abyssinica, Rev. Bras. Farmacogn., 2017, vol. 27, no. 2, pp. 251–253.

    Article  CAS  Google Scholar 

  14. Egorov, N.S., Osnovy ucheniya ob antibiotikakh (Antibiotics: A Scientific Approach), Moscow: Mosk. Gos. Univ., 2004.

  15. Fenice, M., Barghini, P., Selbmann, L., et al., Combined effects of agitation and aeration on the chitinolytic enzymes production by the Antarctic fungus Lecanicillium muscarium CCFEE 5003, Microb. Cell Fact., 2012, vol. 11, no. 1, p. 12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gesheva, V., Production of antibiotics and enzymes by soil microorganisms from the windmill islands region, Wilkes Land, East Antarctica, Polar Biol., 2010, vol. 33, no. 10, pp. 1351–1357.

    Article  Google Scholar 

  17. Giudice, A.L. and Fani, R., Antimicrobial Potential of cold-adapted bacteria and fungi from polar regions, in Biotechnology of Extremophiles, Springer Int. Publ., 2016.

    Google Scholar 

  18. Glushakova, A.M., Kachalkin, A.V., and Chernov, I.Y., Specific features of the dynamics of epiphytic and soil yeast communities in the thickets of Indian balsam on mucky gley soil, Eur. Soil Sci., 2011, vol. 44, no. 8, pp. 886–892.

    Article  Google Scholar 

  19. Gonçalves, V.N., Carvalho, C.R., Johann, S., et al., Antibacterial, antifungal, and antiprotozoal activities of fungal communities present in different substrates from Antarctica, Polar Biol., 2015, vol. 38, no. 8, pp. 1143–1152.

    Article  Google Scholar 

  20. Gupta, P., Sangwan, N., Lal, R., et al., Bacterial diversity of Drass, cold desert in Western Himalaya, and its comparison with Antarctic and Arctic, Arch. Microbiol., 2015, vol. 197, no. 6, pp. 851–860.

    Article  CAS  PubMed  Google Scholar 

  21. Gupta, R., Kumari, A., Syal, P., et al., Molecular and functional diversity of yeast and fungal lipases: their role in biotechnology and cellular physiology, Progr. Lipid Res., 2015, vol. 57, pp. 40–54.

    Article  CAS  Google Scholar 

  22. Hamdan, A., Psychrophiles: Ecological significance and potential industrial application, S. Afr. J. Sci., 2018, vol. 114, nos. 5–6, pp. 1–6.

    Article  Google Scholar 

  23. Henríquez, M., Vergara, K., Norambuena, J., et al., Diversity of cultivable fungi associated with Antarctic marine sponges and screening for their antimicrobial, antitumoral and antioxidant potential, World J. Microbiol. Biotechnol., 2014, vol. 30, no. 1, pp. 65–76.

    Article  PubMed  Google Scholar 

  24. Johannes, C. and Majcherczyk, A., Laccase activity tests and laccase inhibitors, J. Biotechnol., 2000, vol. 78, no. 2, pp. 193–199.

    Article  CAS  PubMed  Google Scholar 

  25. Kawaguchi, M., Nonaka, K., Masuma, R., et al., New method for isolating antibiotic-producing fungi, J. Antibiot., 2013, vol. 66, no. 1, pp. 17–21.

    Article  CAS  Google Scholar 

  26. Kirtsideli, I.Yu., Vlasov, D.Yu., Abakumov, E.V., et al., The diversity and enzymatic activity of micromycetes from underdeveloped soils of the Coastal Antarctic, Mikol. Fitopatol., 2010, vol. 44, no. 5, pp. 387–397.

    Google Scholar 

  27. Krishnan, A., Alias, S.A., Wong, C.M., et al., Extracellular hydrolase enzyme production by soil fungi from King George Island, Antarctica, Polar Biol., 2011, vol. 34, no. 10, pp. 1535–1542.

    Article  Google Scholar 

  28. Kumar, A. and Kumar, A., Synthesis and Regulation of Fungal Secondary Metabolites, Springer-Verlag, 2019.

    Book  Google Scholar 

  29. Kümmerer, K., Antibiotics in the aquatic environment—A review—Part I, Chemosphere, 2009, vol. 75, pp. 417–434.

    Article  PubMed  Google Scholar 

  30. Lasek, R., Dziewit, L., Ciok, A., et al., Genome content, metabolic pathways and biotechnological potential of the psychrophilic Arctic bacterium Psychrobacter sp. DAB_AL43B, a source and a host of novel Psychrobacter-specific vectors, J. Biotechnol., 2017, vol. 263, pp. 64–74.

    Article  CAS  PubMed  Google Scholar 

  31. Machavariani, N.G. and Terekhova, L.P., Biologically active compounds formed by endophyte microorganisms, Antibiot. Chemother.. 2014, vol. 59, nos. 5–6, pp. 26–33.

  32. Maggi, O., Tosi, S., Angelova, M., Lagostina, E., et al., Adaptation of fungi, including yeasts, to cold environments, Plant Biosyst., 2013, vol. 147, no. 1, pp. 247–258.

    Article  Google Scholar 

  33. Marfenina, O.E., Nikitin, D.A., and Ivanova, A.E., The structure of mushroom biomass and the diversity of cultivated micromycetes in the soils of Antarctica (Progress and Russkaya stations), Soil Sci., 2016, vol. 8, pp. 991–999.

    Google Scholar 

  34. Margesin, R. and Collins, T., Microbial ecology of the cryosphere (glacial and permafrost habitats): Current knowledge, Appl. Microbiol. Biotechnol., 2019, vol. 103, no. 4, pp. 2537–2549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Maxime, S., Tytgat, B., Verleyen, E., et al., Biogeography and macroevolution in the Arctic and Antarctic lacustrine microbiomes, 2017.

  36. Mergelov, N.S., Dolgikh, A.V., Zazovskaya, E.P., et al., Soils and soil-like bodies of oases and nunataks of East Antarctica, Geogr. Issues, 2016, vol. 142, pp. 593–628.

    Google Scholar 

  37. Nikitin, D.A., Marfenina, O.E., and Maksimova, I.A., Using the succession approach in studying the species composition of microscopic fungi and the content of mushroom biomass in Antarctic soils, Mikol. Fitopatol., 2017, vol. 51, no. 4, pp. 211–219.

    Google Scholar 

  38. Nisa, H., Kamili, A.N., Nawchoo, I.A., et al., Fungal endophytes as prolific source of phytochemicals and other bioactive naturalproducts: A review, Microb. Pathogen., 2015, vol. 82, pp. 50–59.

    Article  CAS  Google Scholar 

  39. Pearce, D.A., Newsham, K.K., Thorne, M.A., et al., Metagenomic analysis of a southern maritime Antarctic soil, Front. Microbiol., 2012, vol. 3, p. 403.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Prakash, O., Mahabare, K., Yadav, K.K., et al., Fungi from extreme environments: a potential source of laccases group of extremozymes, in Fungi in Extreme Environments: Ecological Role and Biotechnological Significance, Springer-Verlag, 2019.

    Google Scholar 

  41. Pudasaini, S., Wilson, J., Ji, M., et al., Microbial diversity of Browning Peninsula, Eastern Antarctica revealed using molecular and cultivation methods, Front. Microbiol., 2017, vol. 8, p. 591.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rosa, L.H., Zani, C.L., Cantrell, C.L., et al., Fungi in Antarctica: Diversity, ecology, effects of climate change, and bioprospection for bioactive compounds, in Fungi of Antarctica, Springer-Verlag, 2019.

    Book  Google Scholar 

  43. Sánchez, L.A., Gómez, F.F., and Delgado, O.D., Cold-adapted microorganisms as a source of new antimicrobials, Extremophiles, 2008, vol. 13, pp. 111–120.

    Article  PubMed  Google Scholar 

  44. Schnürer, J. and Rosswall, T., Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter, Appl. Environ. Microbiol., 1982, vol. 43, no. 6, pp. 1256–1261.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Silveira, M.H.L., Aguiar, R.S., Siika-Aho, M., et al., Assessment of the enzymatic hydrolysis profile of cellulosic substrates based on reducing sugar release, Bioresour. Technol., 2014, vol. 151, pp. 392–396.

    Article  CAS  PubMed  Google Scholar 

  46. Singh, J., Dubey, A.K., and Singh, R.P., Antarctic terrestrial ecosystem and role of pigments in enhanced UV-B radiations, Rev. Environ. Sci. BioTechnol., 2011, vol. 10, no. 1, pp. 63–77.

    Article  Google Scholar 

  47. Svahn, K.S., Chryssanthou, E., Olsen, B., et al., Penicillium nalgiovense Laxa isolated from Antarctica is a new source of the antifungal metabolite amphotericin B., Fungal Biol. Biotechnol., 2015, vol. 2, no. 1, p. 1.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tomova, I., Stoilova-Disheva, M., Lazarkevich, I., et al., Antimicrobial activity and resistance to heavy metals and antibiotics of heterotrophic bacteria isolated from sediment and soil samples collected from two Antarctic islands, Front. Life Sci., 2015, vol. 8, no. 4, pp. 348–357.

    Article  CAS  Google Scholar 

  49. Tosi, S., Kostadinova, N., Krumova, E., et al., Antioxidant enzyme activity of filamentous fungi isolated from Livingston Island, Maritime Antarctica, Polar Biol., 2010, vol. 33, no. 9, pp. 1227–1237.

    Article  Google Scholar 

  50. Vaca, I. and Chávez, R., Bioactive compounds produced by Antarctic filamentous fungi, in Fungi of Antarctica, Springer-Verlag, 2019.

    Google Scholar 

  51. Vaz, A.B., Rosa, L.H., Vieira, M.L., et al., The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica, Braz. J. Microbiol., 2011, vol. 42, no. 3, pp. 937–947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhelezova, A., Chernov, T., Tkhakakhova, A., et al., Prokaryotic community shifts during soil formation on sands in the tundra zone, PloS One, 2019, vol. 14, no. 4, p. e0206777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.A. Baranova (Gauze Institute of New Antibiotics) for help in preparing organic extracts for micromycete antibiotic activity assays and to Prof. O.E. Mar-fenina (Moscow State University) for valuable comments.

Funding

Isolation of pure cultures and their species identification by cultural, morphological, and molecular biological characters were supported by the Russian Foundation for Basic Research (project no. 20-04-00328). Testing the polar micromycete strains for antimicrobial properties was supported by the Russian Science Foundation (project no. 18-74-10073).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. A. Nikitin or V. S. Sadykova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

This article does not contain any studies involving animals or human subjects performed by any of the authors.

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitin, D.A., Sadykova, V.S., Kuvarina, A.E. et al. Enzymatic and Antimicrobial Activities in Polar Strains of Microscopic Soil Fungi . Dokl Biol Sci 507, 380–393 (2022). https://doi.org/10.1134/S0012496622060151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012496622060151

Keywords:

Navigation