Skip to main content
Log in

Cold-adapted microorganisms as a source of new antimicrobials

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Thirty out of 8,000 different colony morphotypes isolated from soil samples of Isla de los Estados were selected based on their ability to produce antimicrobials. The significant influence of culture media and incubation temperature on antimicrobial production was proved, being LB medium and 8°C the conditions of choice. Most of the psychrotolerant isolates were phylogenetically related to Serratia proteamaculans (96.4–97.9%) while the psychrophilic isolated 8H1 was closely related to Pseudomonas sp. (90–94% similarity). Produced antimicrobials showed a promising wide spectrum of activity both against gram-positive and gram-negative pathogenic bacteria. They were suspected to be microcin-like compounds (Mw <2,000 Da) and showed a marked tolerance to heat (1 h in boiling water bath) and pH-treatments (1–12). Antimicrobial compounds also showed to partially keep their activity even after overnight freezing at −20 and −80°C and displayed a negative net charge at pH 8.0, a common feature of class II microcins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aravalli RN, She Q, Garrett RA (1998) Archaea and the new age of microorganisms. Trends Ecol Evol 13:190–194

    Article  Google Scholar 

  • Asensio C, Pérez-Diaz JC (1976) A new family of low molecular weight antibiotics from enterobacteria. Biochem Biophys Res Commun 69:7–14

    Article  PubMed  CAS  Google Scholar 

  • Barton MD, Hart WS (2001) Public health risks: antibiotic resistance—review. Asian Aust J Anim 14:414–422

    CAS  Google Scholar 

  • Benito J, Lovrich G, Siñeriz F, Abate C (2004) Isolation and molecular characterization of seawater bacteria. In: Spencer F, de Spencer Ragout A (eds) Environmental microbiology: methods and protocols. Humana Press, New Jersy

  • Bizani D, Brandelli A (2004) Influence of media and temperature on bacteriocin production by Bacillus cereus 8A during batch cultivation. Appl Microbiol Biotech 65:158–162

    Article  CAS  Google Scholar 

  • Brenner DJ (1981) Introduction to the family enterobacteriaceae. In: Balows A, Trüper H, Dworkin M, Harder W, Schleifer K (eds) The prokaryotes: a handbook on the biology of bacteria: eco-physiology, isolation, identification, applications, vol 3. Springer, New York, pp 2673–2695

  • Coenye T, Vanlaere E, Lipuma J, Vandamme P (2003) Identification of genomic groups in the genus Stenotrophomonas using gyrB RFLP analysis. FEMS Immunol Med Microbiol 40:181–185

    Article  CAS  Google Scholar 

  • Coventry MJ, Gordon JB, Wilcock A, Harmark K, Davidson BE, Hickey MW, Hiller AJ, Wan J (1997) Detection of bacteriocins of lactic acid bacteria isolated from foods and comparison with pediocin and nisin. J Appl Microbiol 83:248–258

    Article  PubMed  CAS  Google Scholar 

  • Da Costa MS, Duarte JC, Williams RA (1988) Microbiology of extreme environments and its potential for biotechnology. FEMS symposium 49. Elsevier, London

    Google Scholar 

  • Dauga C (2002) Evolution of the gyrB gene and the molecular phylogeny of Enterobacteriaceae: a model molecule for molecular systematic studies. Int J Syst Evol Microbiol 52:531–547

    PubMed  CAS  Google Scholar 

  • Dauga C, Grimont F, Grimont PAD (1990) Nucleotide sequences of 16S rRNA from ten Serratia species. Res Microbiol 141:1139–1149

    Article  PubMed  CAS  Google Scholar 

  • Davies J, Webb V (1998) Antibiotic resistance in bacteria. In: Krause RM (ed) Emerging infections: biomedical research reports. Academic Press, San Diego

    Google Scholar 

  • Feller G, Zekhnini Z, Lamotte-Brasseur J, Gerday C (1997) Enzymes from cold-adapted microorganisms. The class C ß-lactamase from the antarctic psychrophile Psychrobacter immobilis A5. Eur J Biochem 244:186–191

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fredericq P (1948) Actions antibiotiques réciproques chez les Enterobacteriaceae. Rev Belg Pathol Med Exp 4:1–107

    Google Scholar 

  • Fukushima M, Kakinuma K, Kawaguchi R (2002) Phylogenetic analysis of Salmonella, Shigella, and Escherichia coli strains on the basis of the gyrB gene sequence. J Clin Microbiol 40:2779–2785

    Article  PubMed  CAS  Google Scholar 

  • Gillor O, Kirkup BC, Riley MA (2004) Colicins and microcins: the next generation antimicrobials. Adv Appl Microbiol 54:129–146

    Article  PubMed  CAS  Google Scholar 

  • Gratia A (1946) Techneues sélectives pour la recherché systématique des germes antibiotiques. C R Soc Biol 140:1053–1055

    CAS  Google Scholar 

  • Hardy KG, Meynell GG (1972) Induction of colicin factor E2–P9 by mitomycin C. J Bacteriol 112:1007–1009

    PubMed  CAS  Google Scholar 

  • Helander IM, Von Wright A, Mattila-Sandholm TM (1997) Potential of lactic acid bacteria and novel antimicrobials against gram-negative bacteria. Trends Food Sci Technol 8:146–150

    Article  CAS  Google Scholar 

  • Horikoshi K (1995) Discovering novel bacteria with an eye to biotechnological applications. Curr Opin Biotech 6:292–297

    Article  CAS  Google Scholar 

  • Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63:735–750

    PubMed  CAS  Google Scholar 

  • Johnson JL (1994) Similarity analysis of DNAs. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, pp 655–681

    Google Scholar 

  • Kazunori H, Tadashi N, Kasai H (2003) Taxonomic re-evaluation of whorl-forming Streptomyces (formerly Streptoverticillium) species by using phenotypes, DNA–DNA hybridization and sequences of gyrB, and proposal of Streptomyces luteireticuli (ex Katoh and Arai 1957) corrig., sp. nov., nom. rev. Int J Syst Evol Microbiol 53:1519–1529

    Article  CAS  Google Scholar 

  • Labrenz M, Collins MD, Lawson PA, Tindall BJ, Braker G, Hirsch P (1998) Antarctobacter heliothermus gen. nov., sp. nov., a budding bacterium from hypersaline and heliothermal Ekho Lake. Int J Syst Bacteriol 48:1363–1372

    PubMed  CAS  Google Scholar 

  • Laviña M, Gaggero C, Moreno F (1990) Microcin H47: a chromosome-encoded microcin antibiotic of Escherichia coli. J Bacteriol 172:6585–6588

    PubMed  Google Scholar 

  • Logan NA, Berkeley CW (1984) Identification of Bacillus strains using the API system. J Gen Microbiol 130:1871–1882

    PubMed  CAS  Google Scholar 

  • Maidak B, Cole J, Lilburn T, Parker C Jr, Saxman P, Stredwick J, Garrity G, Li B (2000) The RDP (ribosomal database project) continues. Nucleic Acids Res 28:173–174

    Article  PubMed  CAS  Google Scholar 

  • O’Brien A, Sharp R, Russell N, Roller S (2004) Antarctic bacteria inhibit growth of food-borne microorganisms at low temperatures. FEMS Microbiol Ecol 48:157–167

    Article  CAS  PubMed  Google Scholar 

  • Phillips CA (1999) The epidemiology, detection and control of Escherichia coli O157. J Sci Food Agric 79:1367–1381

    Article  CAS  Google Scholar 

  • Pons AM, Lanneluc I, Cottenceau G, Sable S (2002) New developments in non-post translationally modified microcins. Biochimie 84:531–537

    Article  PubMed  CAS  Google Scholar 

  • Portrait V, Gendron-Gaillard S, Cottenceau G, Pons AM (1999) Inhibition of pathogenic Salmonella enteritidis growth mediated by Escherichia coli microcin J25 producing strains. Can J Microbiol 45:988–994

    Article  PubMed  CAS  Google Scholar 

  • Prangishvili D, Holz I, Stieger E, Nickell S, Kristjansson JK, Zillig W (2000) Sulfolobicins, specific proteinaceous toxins produced by strains of the extremophilic archaeal genus Sulfolobus. J Bacteriol 182:2985–2988

    Article  PubMed  CAS  Google Scholar 

  • Quillaguamán J, Hatti-Kaul R, Mattiasson B, Alvarez T, Delgado O (2004) Halomonas boliviensis sp. nov., alkalitolerant and moderately halophilic bacteria isolated from soil around a Bolivian hypersaline lake. Int J Syst Evol Microbiol 54:721–725

    Article  PubMed  CAS  Google Scholar 

  • Ritzau M, Keller M, Wessels P, Stetter KO, Zeeck A (1993) New cyclic polysulphides from hyperthermophilic archaea of the Genus Thermococcus. Liebigs Ann Chem 37:871–876

    Article  Google Scholar 

  • Rodgers S (2001) Preserving non-fermented refrigerated food with microbial cultures a review. Trends Food Sci Technol 12:276–284

    Article  Google Scholar 

  • Rodriguez-Valera F (1992) Biotechnological potential of halobacteria. Biochem Soc Symp 58:135–147

    PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Salomón R, Farías N (1999) Microcin 25 a novel antimicrobial peptide produced by Escherichia coli. J Bacteriol 174:7428–7435

    Google Scholar 

  • Sambrook I, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Chemical Society, Washington, pp 607–654. ISBN 1-55581-048-9

    Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 101:11030–11035

    Article  PubMed  CAS  Google Scholar 

  • Weisburg W, Barns S, Pelletier D, Lane D (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed  CAS  Google Scholar 

  • Yamamoto S, Harayama S (1996) Phylogenetic analysis of Acinetobacter strains based on the nucleotide sequences of gyrB genes and on the amino acid sequences of their products. Int J Syst Bacteriol 46:506–511

    Article  PubMed  CAS  Google Scholar 

  • Zahner H, Fielder HP (1995) The need for new antibiotics: possible ways forward. In: Hunter PA, Darby GK, Russell NJ (eds) Fifty years of antimicrobials: past perspectives and future trends, SGM symposium 53. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osvaldo D. Delgado.

Additional information

Communicated by H. Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez, L.A., Gómez, F.F. & Delgado, O.D. Cold-adapted microorganisms as a source of new antimicrobials. Extremophiles 13, 111–120 (2009). https://doi.org/10.1007/s00792-008-0203-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-008-0203-5

Keywords

Navigation