Skip to main content
Log in

Micronutrient Selenium: Uniqueness and Vital Functions

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—The trace element selenium, which was discovered by Berzelius in 1817, remains poorly investigated and exhibits diverse and surprising functions. We consider it unique for several reasons. First, it is present not only in organic or inorganic compounds but also in the amino acids selenocysteine and selenomethionine, as a key component, and in selenoproteins, which are found in all Domains of life. Second, selenocysteine is the 21st proteinogenic amino acid. Its uniqueness lies not only in the fact that it is encoded by one of the three stop codons of translation but in that its biosynthesis possesses unique features and that this process involves unique cis- and trans-active factors that are necessary for the recognition of this triplet as selenocysteine-encoding to avoid premature translation termination and synthesize full-sized selenoproteins. The maintenance of these cis- and trans-active factors is energy consuming, which suggests the crucial importance of selenoproteins for an organism. In addition, the pathways of amino-acid and selenoprotein biosynthesis have some distinctive features in different Domains of life. Third, the processes and effects of selenium compounds of different origins, in which this micronutrient plays key roles, are strikingly diverse, especially in the regulation of vital functions in mammals. This review uses the most recent data to present a comprehensive view of the properties and functions of selenium and to provide insight into the uniqueness of this micronutrient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. S. Menon, K. S. Shrudhi Devi, R. Santhiya, et al., Colloids Surf. B. Biointerfaces 170, 280 (2018).

    Article  Google Scholar 

  2. E. G. Varlamova, M. V. Goltyaev, and E. E. Fesenko, Dokl. Biochem. Biophys. 468, 203 (2016).

    Article  Google Scholar 

  3. E. G. Varlamova and I. V. Cheremushkina, J. Trace Elem-. Med. Biol. 39, 76 (2017).

    Article  Google Scholar 

  4. E. G. Varlamova, M. V. Goltyaev, V. I. Novoselov, and E. E. Fesenko, Dokl. Biochem. Biophys. 476, 320 (2017).

    Article  Google Scholar 

  5. E. G. Varlamova, J. Trace Elem. Med. Biol. 48, 172 (2018).

    Article  Google Scholar 

  6. E. G. Varlamova, M. V. Goltyaev, J. P. Kuznetsova, Mol. Biol. (Moscow) 52, 446 (2018).

    Article  Google Scholar 

  7. Y. P. Kuznetsova, M. V. Goltyaev, O. S. Gorbacheva, et al., Dokl. Biochem. Biophys. 480, 131 (2018).

    Article  Google Scholar 

  8. U. Peters and Y. Takata, Mol. Nutr. Food Res. 52, 1261(2008)

    Article  Google Scholar 

  9. J. P. Richie, Jr., A. Das, A. M. Calcagnotto, et al., Exp. Gerontol. 47, 223 (2012).

    Article  Google Scholar 

  10. C. van Dronkelaar, A. van Velzen, M. Abdelrazek, et al., J. Am. Med. Dir. Assoc. 19, 6 (2018).

    Article  Google Scholar 

  11. L. A. Wessjohann, A. Schneider, M. Abbas, and W. Brandt, J. Biol. Chem. 388, 997 (2007).

    Google Scholar 

  12. E. S. Arner, J. Exp. Cell Res. 316, 1296 (2010).

    Article  ADS  Google Scholar 

  13. C. Jacob, G. I. Giles, N. M. Giles, et al., Angew. Chem. Int. Ed. Engl. 42, 4742 (2003).

    Article  Google Scholar 

  14. L. Johansson, G. Gafvelin, and E. S. Arner, Biochim. Biophys. Acta 1726, 1 (2005).

    Article  Google Scholar 

  15. M. Wada, S.-I. Nobuki, and Y. Tenkyuu, J. Organomet. Chem. 580, 282 (1999).

    Article  Google Scholar 

  16. J. C. Pleasants, W. Guo, and D. L. Rabenstein, J. Am. Chem. Soc. 111, 6553 (1989).

    Article  Google Scholar 

  17. X. M. Xu, B. A. Carlson, H. Mix, et al., PLoS Biol. 5, 122 (2007).

    Google Scholar 

  18. M. J. Berry, R. M. Tujebajeva, P. R. Copeland, et al., J. Biofactors 14, 17 (2001).

    Article  Google Scholar 

  19. D. J. Klein, T. M. Schmeing, P. B. Moore, and T. A. Steitz, EMBO J. 20, 4214 (2001).

    Article  Google Scholar 

  20. P. R. Copeland, J. E. Fletcher, B. A. Carlson, et al., EMBO J. 19, 306 (2000).

    Article  Google Scholar 

  21. A. M. Diamond, B. Dudock, and D. L. Hatfield, Cell 25, 497 (1981).

    Article  Google Scholar 

  22. D. A. G. Noble and H. Song, Cell Mol. Life Sci. 65, 1335 (2008).

    Article  Google Scholar 

  23. G. R. Andersen, L. Pedersen, L. Valente, et al., Mol. Cell 6, 1261 (2000).

    Article  Google Scholar 

  24. G. W. Martin, III, J. W. Harney, and M. J. Berry, RNA 2, 171 (1996).

    Google Scholar 

  25. G. W. Martin, III, J. W. Harne, and M. J. Berry, RNA 4, 65 (1998).

    Google Scholar 

  26. F. Werner, Chem. Rev. 113, 8331 (2013).

    Article  Google Scholar 

  27. C. Sturchler, A. Lescure, G. Keith, et al., Nucleic Acids Res. 22, 1354 (1994).

    Article  Google Scholar 

  28. C. Baron, E. Westhof, A. Bock, and R. Giege, J. Mol. Biol. 231, 274 (1993).

    Article  Google Scholar 

  29. K. M. Holman, A. K. Puppala, J. W. Lee, et al., RNA 23, 1685 (2017).

    Article  Google Scholar 

  30. Y. Itoh, M. J. Broecker, S.-I. Sekine, et al., Science 340, 75 (2013).

    Article  ADS  Google Scholar 

  31. L. R. Manzine, V. H. B. Serrao, L. Lima, et al., FEBS Lett. 587, 906 (2013).

    Article  Google Scholar 

  32. N. Noinaj, R. Wattanasak, D.-Y. Lee, et al., J. Bacte-riol. 194, 499 (2012).

    Article  Google Scholar 

  33. T. Stock, M. Selzer, S. Connery, et al., Mol. Microbiol. 82, 734 (2011).

    Article  Google Scholar 

  34. P. R. Copeland, V. A. Stepanik, and D. M. Driscoll, J. Mol. Cell Biol. 21, 1491 (2001).

    Article  Google Scholar 

  35. J. Donovan and P. R. Copeland, Antioxid. Redox Signal. 12, 881 (2010).

    Article  Google Scholar 

  36. L. Chavatte, B. A. Brown, and D. M. Driscoll, Nat. Struct. Mol. Biol. 12, 408 (2005).

    Article  Google Scholar 

  37. P. R. Copeland, J. Genome Biol. 6, 221 (2005).

    Article  Google Scholar 

  38. G. V. Kryukov, S. Castellano, S. V. Novoselov, et al., Science 300, 1439 (2003).

    Article  ADS  Google Scholar 

  39. G. V. Kryukov and V. N. Gladyshev, EMBO Rep. 5, 538 (2004).

    Article  Google Scholar 

  40. Y. Zhang, D. E. Fomenko, and V. N. Gladyshev, Genome Biol. 6, 37 (2005).

    Article  Google Scholar 

  41. Q. A. Sun, Y. Wu, F. Zappacosta, et al., J. Biol. Chem. 274, 24522 (1999).

    Article  Google Scholar 

  42. R. F. Burk and K. E. Hill, Bioessays 21, 231 (1999).

    Article  Google Scholar 

  43. L. Flohe, W. A. Gunzler, and H. H. Schock, FEBS Lett. 32, 132 (1973).

    Article  Google Scholar 

  44. J. T. Rotruck, A. L. Pope, H. E. Ganther, et al., Science 179, 588 (1973).

    Article  ADS  Google Scholar 

  45. S. Gromer, J. Wissing, D. Behne, et al., J. Biochem. 332, 591 (1998).

    Article  Google Scholar 

  46. M. P. Rayman, H. G. Infante, and M. Sargent, Br. J. Nutr. 100, 238 (2008).

    Article  Google Scholar 

  47. P. D. Whanger, J. Am. Coll. Nutr. 21, 223 (2002).

    Article  Google Scholar 

  48. Y. Dong, D. Lisk, E. Block, and C. Ip, Cancer Res. 61, 2923 (2001).

    Google Scholar 

  49. Y. Kobayashi, Y. Ogra, and K. Ishiwata, Proc. Natl. Acad. Sci. U. S. A. 99, 15932 (2002).

    Article  ADS  Google Scholar 

  50. Y. Anan, M. Kimura, M. Hayashi, et al., Chem. Res. Toxicol. 28, 1803 (2015).

    Article  Google Scholar 

  51. E. Vetchinkina, E. Loshchinina, V. Kursky, and V. Nikitina, J. Microbiol. 51, 829 (2013).

    Article  Google Scholar 

  52. J. F. Stolz, P. Basu, J. M. Santini, and R. S. Oremland, Annu. Rev. Microbiol. 160, 107 (2006).

    Article  Google Scholar 

  53. J. F. Stolz and R. S. Oremland, FEMS Microbiol. Rev. 23, 615 (1999).

    Article  Google Scholar 

  54. J. F. Stolz, P. Basi, and R. S. Oremland, Int. Microbiol. 5, 201 (2002).

    Article  Google Scholar 

  55. B. Soboh, C. Pinske, and M. Kuhns, BMC Microbiol. 11, 173 (2011).

    Article  Google Scholar 

  56. M. E. Losi and W. T. Frankenberger, Appl. Environ. Microbiol. 63, 3079 (1997).

    Google Scholar 

  57. H. Ridley, C. A. Watts, D. J. Richardson and C. S. Butler, Appl. Environ. Microbiol. 72, 5173 (2006).

    Article  Google Scholar 

  58. J. Kessi, M. Ramuz, E. Wehrli, et al., Appl. Environ. Microbiol. 65, 4734 (1999).

    Google Scholar 

  59. F. A. Tomei, L. L. Barton, C. L. Lemanski, et al., J. Ind. Microbiol. 14, 329 (1995).

    Article  Google Scholar 

  60. Y. V. Nancharaiah and P. N. L. Lens, Microbiol. Mol. Biol. Rev. 79, 61 (2015).

    Article  Google Scholar 

  61. W. E. Hart, S. P. Marczak, A. R. Kneller, et al., J. Inorg. Biochem. 125, 1 (2013).

    Article  Google Scholar 

  62. S. Ansar, M. Abudawood, S. S. Hamed, and M. M. Aleem, Biol. Trace Elem. Res. 175, 161 (2017).

    Article  Google Scholar 

  63. Z. Shigemi, K. Manabe, and N. Hara, Chem. Biol. Interact. 266, 28 (2017).

    Article  Google Scholar 

  64. M. Kieliszek, B. Lipinski, and S. Błazejak, Cells 24, 39 (2017).

    Article  Google Scholar 

  65. E. D. Paskett, J. A. Dean, J. M. Oliveri, and J. P. Harrop, J. Clin. Oncol. 30, 3726 (2012).

    Article  Google Scholar 

  66. N. Xiang, R. Zhao, and W. Zhong, Cancer Chemother. Pharmacol. 63, 351 (2009).

    Article  Google Scholar 

  67. N. M. Corcoran, M. Najdovska, and A. J. Costello, J. Urol. 171, 907 (2004).

    Article  Google Scholar 

  68. S. R. Shultz, D. K. Wright, P. Zheng, et al., Brain 138, 1297 (2015).

    Article  Google Scholar 

  69. T. R. Schwartz, E. B. Kmiec, BMC Mol. Biol. 8, 7 (2007).

    Article  Google Scholar 

  70. S. Cao, F. A. Durrani, K. Toth, and Y. M. Rustum, Br. J. Cancer 110, 1733 (2014).

    Article  Google Scholar 

  71. S. Chintala, K. Toth, and S. Cao, Cancer Chemother. Pharmacol. 66, 899 (2010).

    Article  Google Scholar 

  72. M. Puppo, F. Battaglia, and C. Ottaviano, Mol. Cancer Ther. 7, 1974 (2008).

    Article  Google Scholar 

  73. M. E. Crosby, R. Kulshreshtha, M. Ivan, and P. M. Glazer, Cancer Res. 69, 1221 (2009).

    Article  Google Scholar 

  74. A. Bhattacharya, K. Toth, and A. Sen, Clin. Colorectal Cancer 8, 155 (2009).

    Article  Google Scholar 

  75. A. Kim, J. Lee, and M. S. Park, Arch. Pharmacol. Res. 38, 659 (2015).

    Article  Google Scholar 

  76. V. G. Deepagan, S. Kwon, and D. G. You, Biomaterials 103, 56 (2016).

    Article  Google Scholar 

  77. D. Bartolini, J. Commodi, M. Piroddi, Free Radic. Biol. Med. 88, 466 (2015).

    Article  Google Scholar 

  78. A. P. Fernandes and V. Gandin, Biochim. Biophys. Acta 1850, 1642 (2015).

    Article  Google Scholar 

  79. A. Liu, H. Liu, and Y. Li, Mol. Carcinog. 51, 303 (2012).

    Article  Google Scholar 

  80. J. E. Spallholz, B. J. Shriver, and T. W. Reid, Nutr. Cancer 40, 34 (2001).

    Article  Google Scholar 

  81. M. Tarrado-Castellarnau, R. Cortes, and M. Zanuy, Pharmacol. Res. 102, 218 (2015).

    Article  Google Scholar 

  82. H. Zeng and M. Wu, Nutr. Cancer 67, 831 (2015).

    Article  Google Scholar 

  83. B. Husbeck, R.S. Bhattacharyya, D. Feldman, and S. J. Knox, Mol. Cancer Ther. 5, 2078 (2006).

    Article  Google Scholar 

  84. G. C. Mills, J. Biol. Chem. 229, 189 (1957).

    Google Scholar 

  85. G. Ravn-Haren, A. Olsen, and A. Tjonneland, Carcinogenesis 27, 820 (2006).

    Article  Google Scholar 

  86. M. Cao, X. Mu, C. Jiang, et al., Tumour Biol. 35, 759 (2014).

    Article  Google Scholar 

  87. J. A. Moscow, L. Schmidt, D. T. Ingram, et al., Carcinogenesis 15, 2769 (1994).

    Article  Google Scholar 

  88. Z. Kote-Jarai, F. Durocher, S. M. Edwards, et al., Prostate Cancer Prostatic Dis. 5, 189 (2002).

    Article  Google Scholar 

  89. I. Dokic, C. Hartmann, C. Herold-Mende, and A. Regnier-Vigouroux, Glia 60, 1785 (2012).

    Article  Google Scholar 

  90. F. F. Chu, J. H. Doroshow, and R. S. Esworthy, J. Biol. Chem. 268, 2571 (1993).

    Google Scholar 

  91. F. F. Chu, R. S. Esworthy, and P. G. Chu, Cancer Res. 64, 962 (2004).

    Article  Google Scholar 

  92. R. S. Esworthy, R. Aranda, M. G. Martin, et al., Am. J. Physiol. Gastrointest. Liver Physiol. 281, 848 (2001).

    Article  Google Scholar 

  93. J. Walshe, M. M. Serewko-Auret, and N. Teakle, Cancer Res. 67, 4751 (2007).

    Article  Google Scholar 

  94. S. B. Bull, H. Ozcelik, and D. Pinnaduwage, J. Clin. Oncol. 22, 86 (2004).

    Article  Google Scholar 

  95. C. Schmutzler, B. Mentrup, L. Schomburg, et al., Biol. Chem. 388, 1053 (2007).

    Article  Google Scholar 

  96. F. G. Ottaviano, S. S. Tang, D. E. Handy, and J. Loscalzo, Mol. Cell. Biochem. 327, 111 (2009).

    Article  Google Scholar 

  97. X. Zhang, J. J. Yang, Y. S. Kim, et al., Int. J. Oncol. 36, 405 (2010).

    Google Scholar 

  98. Z. L. Yang, L. Yang, and Q. Zou, Dis. Markers 35, 163 (2013).

    Article  Google Scholar 

  99. Y. Saga, M. Ohwada, and M. Suzuki, Oncol. Rep. 20, 1299 (2008).

    Google Scholar 

  100. F. Ursini, S. Heim, M. Kiess, et al., Science 277, 1393 (1999).

    Article  Google Scholar 

  101. T. Pushpa Rekha, L. M. Burdsal, G. M. Chilsom, and D. M. Driscoll, J. Biol. Chem. 270, 26993 (1985).

    Article  Google Scholar 

  102. M. V. Goltyaev, E. G. Varlamova, V. I. Novoselov, and E. E. Fesenko, Dokl. Biochem. Biophys. 457, 132 (2014).

    Article  Google Scholar 

  103. E. G. Varlamova, Fundament. Issled. 9, 326 (2011).

    Google Scholar 

  104. A. Holmgren and M. Bjornstedt, Methods Enzymol. 252, 16644 (1995).

    Google Scholar 

  105. L. Zhong and A. Holmgren, J. Biol. Chem. 275, 1812 (2000).

    Google Scholar 

  106. C. Meplan, S. Rohrmann, A. Steinbrecher, et al., PloS One 7, e48709 (2012).

    Article  ADS  Google Scholar 

  107. D. Su, S. V. Novoselov, Q. A. Sun, et al., J. Biol. Chem. 280, 26491 (2005).

    Article  Google Scholar 

  108. A. S. H. Wu, J. E. Oldfield, L. R. Shull, and P. R. Cheeke, Biol. Reprod. 20, 793 (1979).

    Article  Google Scholar 

  109. D. Behne, H. Weiler, A. Kyriakopoulos, J. Reprod. Fertil. 106, 291 (1996).

    Article  Google Scholar 

  110. I. F. M. Marai, A. A. El-Darawany, E. A. Ismail, and M. A. M. Abdel-Hafez, Arch. Tierzucht 52, 402 (2009).

  111. L. G. Shi, R. J. Yang, and W. B. Yue, Anim. Reprod. Sci. 118, 248 (2010).

    Article  Google Scholar 

  112. M. Koga, H. Tanaka, K. Yomogida, et al., Biol. Reprod. 58, 261 (1998).

    Article  Google Scholar 

  113. G. E. Olson, V. P. Winfrey, S. K. Nagdas, et al., Biol. Reprod. 73, 201 (2005).

    Article  Google Scholar 

  114. E. G. Varlamova and V. I. Novoselov, Mol. Biol. (Moscow) 46, 819 (2012).

    Google Scholar 

  115. E. G. Varlamova and V. I. Novoselov, Mol. Biol. (Moscow) 46, 250 (2012).

    Article  Google Scholar 

  116. E. G. Varlamova, S. V. Novoselov, and V. I. Novoselov, Mol. Biol. (Moscow) 49, 700 (2015).

    Article  Google Scholar 

  117. S. Y. Cheng, J. L. Leonard, and P. J. Davis, Endocr. Rev. 31, 139 (2010).

    Article  Google Scholar 

  118. P. H. Davies, M. C. Sheppard, and J. A. Franklyn, Mol. Cell Endocrinol. 129, 191 (1997).

    Article  Google Scholar 

  119. E. L. Meyer, I. M. Goemann, J. M. Dora, et al., Mol. Cell Endocrinol. 289, 16 (2008).

    Article  Google Scholar 

  120. R. Kukreja and A. Khan, Ind. J. Exp. Biol. 36, 203 (1998).

    Google Scholar 

  121. G. R. Hogan, J. Toxicol. Environ. Health 53, 113 (1998).

    Article  Google Scholar 

  122. M. Roy, L. Kiremidjian-Schumacher, and H. I. Wis-he, Biol. Trace Elem. Res. 41, 103 (1994).

    Article  Google Scholar 

  123. F. W. Hoffmann, A. C. Hashimoto, L. A. Shafer, et al., J. Nutr. 140, 1155 (2010).

    Article  Google Scholar 

  124. G. Bermano, J. R. Arthur, and J. E. Hesketh, Biochem. J. 320, 891 (1996).

  125. G. Bermano, J. R. Arthur, and J. E. Hesketh, FEBS Lett. 387, 157 (1996).

    Article  Google Scholar 

  126. G. Bermano, F. Nicol, J. A. Dyer, et al., Biochem. J. 311, 425 (1995).

    Article  Google Scholar 

  127. X. G. Lei, J. K. Evenson, K. M. Thompson, and R. A. Sunde, J. Nutr. 125, 1438 (1995).

    Google Scholar 

  128. Z. Touat-Hamici, Y. Legrain, A. L. Bulteau, and L. Chavatte, J. Biol. Chem. 289, 14750 (2014).

    Article  Google Scholar 

  129. L. Latreche, S. Duhieu, Z. Touat-Hamici, et al., RNA Biol. 9, 681 (2012).

    Article  Google Scholar 

  130. Y. Legrain, Z. Touat-Hamici, and L. Chavatte, J. Biol. Chem. 289, 6299 (2014).

    Article  Google Scholar 

  131. M. A. Beck, P. C. Kolbeck, L. H. Rohr, et al., J. Med. Virol. 43, 166 (1994).

    Article  Google Scholar 

  132. D. D. Hensrud, D. C. Heimburger, J. Chen, and B. Parpia, Eur. J. Clin. Nutr. 48, 455 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Varlamova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by V. Gulevich

Abbreviations: Sec, selenocysteine; Cys, cysteine; SeMet, selenomethionine; SECIS element (SecInsertionSequence), cis-acting translation factor for selenoproteins; SBP2 (SECIS BindingProtein), trans-acting translation factor for selenoproteins; ROS, reactive oxygen species; TXNRD, thioredoxin reductase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varlamova, E.G., Maltseva, V.N. Micronutrient Selenium: Uniqueness and Vital Functions. BIOPHYSICS 64, 510–521 (2019). https://doi.org/10.1134/S0006350919040213

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350919040213

Navigation