Skip to main content
Log in

The molecular mechanism of adsorption immobilization of inulinase on polymer matrices

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The conditions and mechanisms of the immobilization of inulinase on polymeric carriers were studied using the VION KN-1 and KU-2 cation-exchangers, VION AN-1 and AV-17-2P anion-exchangers, and the ampholyte KOPAN-90. The calculated data showed a significant role of van der Waals interactions and hydrogen bonding in the formation of virtually all inulinase complexes with the immobilization matrices. The AV-17-2P anion-exchanger was the only one of the studied polymer matrices that was unable to form hydrogen bonds with inulinase. The mechanisms of the interaction between inulinase and various ampholytes and cation and anion exchange resins differ from each other. The strongest differences are observed in mechanisms of the sorption of inulinase on VION KN-1 and chitosan matrices. Approximately 87% of the identical amino-acid residues are involved in the interaction of the enzyme with the KU-2 and AV-17-2P resins and the VION AN-1 and KOPAN-90 fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Letca, C. Hemmerling, M. Walter, et al., Roum. Biotechnol. Lett. 9 (5), 1879 (2004).

    Google Scholar 

  2. Y. Makino, P. S. Lima, F. M. Filho, and M. I. Rodrigues, Brazil. J. Chem. Engineer. 22 (4), 539 (2005).

    Article  Google Scholar 

  3. E. Barranco-Florido, M. Garcia-Garibay, L. Gomez-Ruiz, and A. Azaola, Process Biochem. 37 (5), 513 (2001).

    Article  Google Scholar 

  4. S. J. Kalil, F. Maugeri, and M. I. Rodrigues, Process Biochem. 40, 581 (2005).

    Article  Google Scholar 

  5. R. S. Singh, R. Dhaliwal, and M. Puri, J. Ind. Microbiol. Biotechnol. 34 (10), 649 (2007).

    Article  Google Scholar 

  6. J. Manso, M. A. Mena, P. Yanez-Sedeno, and J. M. Pingarron, Anal. Biochem. 375 (2), 345 (2008).

    Article  Google Scholar 

  7. M. Trytek, J. Fiedurek, B. Podkoscielna, et al., J. Ind. Microbiol. Biotechnol. 42 (7), 985 (2015).

    Article  Google Scholar 

  8. T. M. Mohamed, S. M. El-Souod, E. M. Ali, et al., J. Biosci. 39 (5), 785 (2014).

    Article  Google Scholar 

  9. T. B. Garlet, C. T. Weber, R. Klaic, et al., Molecules 19 (9), 14615 (2014).

    Article  Google Scholar 

  10. C. Altunbas, M. Uygun, D. A. Uygun, et al., Appl. Biochem. Biotechnol. 170 (8), 1909 (2013).

    Article  Google Scholar 

  11. G. de Oliveira KUhn, C. D. Rosa, M. F. Silva, et al., Appl. Biochem. Biotechnol. 169 (3), 750 (2013).

    Article  Google Scholar 

  12. G. L. Santa, S. M. Bernardino, S. Magalhaes, et al., Appl. Biochem. Biotechnol. 165 (1), 1 (2011).

    Article  Google Scholar 

  13. T. A. Kovaleva, M. G. Kholyavka, and A. S. Takha, Biotechnol. Russia 2, 73 (2009).

    Google Scholar 

  14. T. A. Kovaleva, M. G. Holyavka, and S. S. Bogdanova, Bull. Exp. Biol. Med. 148 (1), 39 (2009).

    Article  Google Scholar 

  15. J. Pouyez, A. Mayard, A. M. Vandamme, et al., Biochimie 94, 2423 (2012).

    Article  Google Scholar 

  16. T. A. Kovaleva, M. G. Kholyavka, and A. S. Takha, Biotechnology in Russia 3, 106 (2007).

    Google Scholar 

  17. M. G. Holyavka, T. A. Kovaleva, M. V. Grechkina, et al., Appl. Biochem. Microbiol. 50 (1), 10 (2014).

    Article  Google Scholar 

  18. M. G. Kholyavka, T. A. Kovaleva, E. A. Khrupina, et al., Biotechnology in Russia 6, 31 (2012).

    Google Scholar 

  19. O. H. Lowry, N. J. Rosebrough, A. L. Faar, and R. J. Randall, J. Biol. Chem. 193, 265 (1951).

  20. M. G. Kholyavka, T. A. Kovaleva, S. I. Karpov, et al., Biophysics (Moscow) 59 (2), 223 (2014).

    Article  Google Scholar 

  21. M. G. Kholyavka, T. A. Kovaleva, V. G. Artyukhov, et al., Fundament. Issled. 4, 663 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Holyavka.

Additional information

Original Russian Text © M.G. Holyavka, M.S. Kondratyev, V.V. Terentyev, A.A. Samchenko, A.V. Kabanov, V.M. Komarov, V.G. Artyukhov, 2017, published in Biofizika, 2017, Vol. 62, No. 1, pp. 9–16.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holyavka, M.G., Kondratyev, M.S., Terentyev, V.V. et al. The molecular mechanism of adsorption immobilization of inulinase on polymer matrices. BIOPHYSICS 62, 5–11 (2017). https://doi.org/10.1134/S0006350917010109

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350917010109

Keywords

Navigation