Skip to main content
Log in

Modeling of phototransduction processes in the photoreceptor disk membranes by the Monte Carlo method

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The Monte Carlo method was used to model the diffusion behaviors of functionally important proteins of the phototransduction system in retinal rod outer segment disk membranes. The results expand our knowledge of the mechanisms of inactivation of the main phototransduction heterotrimeric GTP-binding protein transducin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ROS:

retinal rod outer segments

Rh:

rhodopsin

Rh*:

photoactivated rhodopsin

Gt:

transducin

Gt*:

activated transducin

PDE:

cGMP-specific phosphodiesterase

PDE* and PDE**:

active PDE formed as a result of the sequential interaction of the enzyme with two activated transducin molecules

References

  1. L. Stryer, Annu. Rev. Neurosci. 9, 87 (1986).

    Article  Google Scholar 

  2. L. Stryer, J. Biol. Chem. 266, 10711 (1991).

    Google Scholar 

  3. E. N. Pugh, Jr., and T. D. Lamb, Biochim. Biophys. Acta 1141, 111 (1993).

    Article  Google Scholar 

  4. E. N. Pugh, Jr., and T. D. Lamb, in Handbook of Biological Physics, Ed. by D. G. Stavenga, E. N. Pugh, Jr., and W. J. de Grip (Elsevier, Amsterdam, 2000), Chapter 5, p. 183.

  5. V. Y. Arshavsky, T. D. Lamb, and E. N. Pugh, Jr., Annu. Rev. Physiol. 64, 153 (2002).

    Article  Google Scholar 

  6. E. E. Fesenko, S. S. Kolesnikov, and A. L. Lyubarsky, Nature 313, 310 (1985).

    Article  ADS  Google Scholar 

  7. D. A. Baylor, T. D. Lamb, and K.-W. Yau, J. Physiol. 288, 613 (1979).

    Google Scholar 

  8. M. E. Burns and D. A. Baylor, Annu. Rev. Neurosci. 24, 779 (2001).

    Article  Google Scholar 

  9. K.-W. Koch and L. Stryer, Nature 334, 64 (1988).

    Article  ADS  Google Scholar 

  10. E. N. Pugh, Jr., T. Duda, A. Sitaramayya, and R. K. Sharma, Biosci. Rep. 17, 429 (1997).

    Article  Google Scholar 

  11. K. Nakatani, and K.-W. Yau, J. Physiol. 395, 695 (1988).

    Article  Google Scholar 

  12. H. R. Matthews, J. Physiol. 490, 1 (1996).

    Article  Google Scholar 

  13. H. R. Matthews, J. Gen. Physiol. 109, 141 (1997).

    Article  Google Scholar 

  14. L. Lagnado, L. Cervetto, and P. A. McNaughton, J. Physiol. 455, 111 (1992).

    Article  Google Scholar 

  15. V. Torre, H. R. Matthews, and T. D. Lamb, Proc. Natl. Acad. Sci. USA. 83, 7109 (1986).

    Article  ADS  Google Scholar 

  16. M. P. Gray-Keller and P. B. Detwiler, Neuron 13, 849 (1994).

    Article  Google Scholar 

  17. S. Kawamura, and M. Murakami, Nature 349, 420 (1991).

    Article  ADS  Google Scholar 

  18. S. Kawamura, Nature 362, 855 (1993).

    Article  ADS  Google Scholar 

  19. L. Lagnado and D. A. Baylor, Nature 367, 273 (1994).

    Article  ADS  Google Scholar 

  20. T. Maeda, Y. Imanishi, and K. Palczewsci, Prog. Retin. Eye Res. 22, 417 (2003).

    Article  Google Scholar 

  21. T. M. Vuong, M. Chabre, and L. Stryer, Nature 311, 659 (1984).

    Article  ADS  Google Scholar 

  22. V. Y. Arshavsky and M. D. Bownds, Nature 357, 416 (1992).

    Article  ADS  Google Scholar 

  23. W. He, C. W. Cowan, and T. G. Wensel, Neuron 20, 95 (1998).

    Article  Google Scholar 

  24. C. W. Cowan, W. He, and T. G. Wensel, Prog. Nucleic Acid Res. Mol. Biol. 65, 341 (2000).

    Article  Google Scholar 

  25. C. W. Cowan, T. G. Wensel, and V. Y. Arshavsky, Methods Enzymol. 315, 524 (2000).

    Article  Google Scholar 

  26. W. He, L. S. Lu, X. Zhang, et al., J. Biol. Chem. 275, 37093 (2000).

    Article  Google Scholar 

  27. G. Hu and T. G. Wensel, Proc. Natl. Acad. Sci. USA. 99, 9755 (2002).

    Article  ADS  Google Scholar 

  28. G. Hu, Z. Zhang, and T. G. Wensel, J. Biol. Chem. 278, 14550 (2003).

    Article  Google Scholar 

  29. K. Martemyanov and V. Y. Arshavsky, Methods Enzymol. 390, 196 (2004).

    Article  Google Scholar 

  30. O. V. Petrukhin, T. G. Orlova, A. R. Nezvetsky, and N. Ya. Orlov, Biophysics (Moscow) 59 (5), 694 (2014).

    Article  Google Scholar 

  31. T. D. Lamb, Biophys. J. 67, 1439 (1994).

    Article  ADS  Google Scholar 

  32. T. D. Lamb, Proc. Natl. Acad. Sci. USA. 93, 566 (1996).

    Article  ADS  Google Scholar 

  33. N. Bennett and A. Clerc, Biochemistry 28, 7418 (1989).

    Article  Google Scholar 

  34. R. R. Yunusov, Candidate’s Dissertation in Physics and Mathematics (Moscow, 2006).

    Google Scholar 

  35. S. Nickell, P. S.-H. Park, W. Baumeister, and K. Palczewski, J. Cell Biol. 177, 917 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Petrukhin.

Additional information

Original Russian Text © O.V. Petrukhin, T.G. Orlova, A.R. Nezvetsky, N.Ya. Orlov, 2016, published in Biofizika, 2016, Vol. 61, No. 6, pp. 1128–1134.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrukhin, O.V., Orlova, T.G., Nezvetsky, A.R. et al. Modeling of phototransduction processes in the photoreceptor disk membranes by the Monte Carlo method. BIOPHYSICS 61, 931–935 (2016). https://doi.org/10.1134/S000635091606021X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000635091606021X

Keywords

Navigation