Skip to main content
Log in

The role of electrostatic interactions in the formation of ferredoxin–ferredoxin NADP+ reductase and ferredoxin–hydrogenase complexes

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

A competitive Brownian model for the interaction of ferredoxin, ferredoxin NADP+ reductase and hydrogenase has been built. In the model, molecules of three types of proteins are placed into a cubic reaction volume, where they move under Brownian and electrostatic forces created by neighboring molecules and the solution. It has been shown that the rate of ferredoxin binding with ferredoxin NADP+ reductase does not change at the pH range from 5.0 to 9.0. Thus, it may be suggested that regulation of ferredoxin NADP+ reductase activity is mediated by other processes. On the other hand, the rate of ferredoxin binding with hydrogenase in the model depends greatly on pH: if the pH value increases from 6.0 to 8.0 the rate increases by factor of three. The increase of the pH value in the stroma under illumination results in an increase of the rate of its interaction with ferredoxin, but decreases the level of protons that are the substrate for the reaction catalyzed by the protein. Thus, the rate of hydrogen production in the chloroplast stroma is low at low pH due to the reception of a small number of electrons by hydrogenase. When the pH increases, the number of electrons that are received by the enzyme from ferredoxin also increases; thus, the rate of hydrogen production increases as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Fd:

ferredoxin

FNR:

ferredoxin NADP+ reductase

PS I:

photosystem I

PS II:

photosystem II

References

  1. H. Gaffron and J. Rubin, J. Gen. Physiol. 26 (2), 219 (1942).

    Article  Google Scholar 

  2. R. E. Blankenship, Molecular Mechanisms of Photosynthesis (Wiley-Blackwell, Oxford, 2014).

    Google Scholar 

  3. J. T. Beatty, and J. F. Allen, Advances in Photosynthesis and Respiration. Discoveries in Photosynthesis (Springer, Dordrecht, 2006).

    Google Scholar 

  4. A. Melis and T. Happe, Plant Physiol. 127, 3740 (2001).

    Article  Google Scholar 

  5. M. L. Ghirardi, R. K. Togasaki, and M. Seibert, Appl. Biochem. Biotech. 63, 141 (1997).

    Article  Google Scholar 

  6. A. Melis, L. Zhang, M. Forestier, et al., Plant Physiol. 122, 127 (2000).

    Article  Google Scholar 

  7. A. Tsygankov, S. Kousouriv, M. Siebert, and M. Ghirardi, Int. J. Hydrogen Energy 27, 1239 (2002).

    Article  Google Scholar 

  8. T. Happe, B. Mosler, and J. D. Naber, Eur. J. Biochem. 222, 769 (1994).

    Article  Google Scholar 

  9. L. Cournac, F. Mus, L. Bernard, et al., Int. J. Hydrogen Energy 27, 1229 (2002).

    Article  Google Scholar 

  10. I. Yacoby, S. Pochekailov, H. Toporik, et al., Proc. Natl. Acad. Sci. U. S. A. 108 (23), 9396 (2011).

    Article  ADS  Google Scholar 

  11. S. Juric, K. Hazler-Pilepic, A. Tomašic, et al., Plant J. 60, 783 (2009).

    Article  Google Scholar 

  12. F. Alte, A. Stengel, J. P. Benz, et al., Proc. Natl. Acad. Sci. U. S. A. 107 (45), 19260 (2010).

    Article  ADS  Google Scholar 

  13. P. Mulo, Biochim. Biophys. Acta 1807, 927 (2011).

    Article  Google Scholar 

  14. M. Balsera, A. Stengel, J. Soll, and B. Bölter, BMC Evol. Biol. 7, 43 (2007).

    Article  Google Scholar 

  15. J. P. Benz, A. Stengel, M. Lintala, et al., Plant Cell 21 (12), 3965 (2009).

    Article  Google Scholar 

  16. Y.-H. Lee, K. Tamura, M. Maeda, et al., J. Biol. Chem. 282 (8), 5959 (2007).

    Article  Google Scholar 

  17. I. B. Kovalenko, A. M. Abaturova, P. A. Gromov, et al., Phys. Biol. 3, 121 (2006).

    Article  ADS  Google Scholar 

  18. I. B. Kovalenko, A. N. Diakonova, A. M. Abaturova, et al., Phys. Biol. 7, 026001 (2010).

    Article  ADS  Google Scholar 

  19. I. B. Kovalenko, A. M. Abaturova, A. N. Diakonova, et al., Math. Model. Nat. Phenom. 6 (7), 39 (2011).

    Article  MathSciNet  Google Scholar 

  20. G. Yu. Riznichenko, I. B. Kovalenko, A. M. Abaturova, et al., Biophys. Rev. 2 (3), 101 (2011).

    Article  Google Scholar 

  21. S. S. Khruschev, A. M. Abaturova, A. N. Diakonova, et al., Biophysics 60 (2), 212 (2015).

    Article  Google Scholar 

  22. E. L. Gross and D. C. Pearson, Jr., Biophys. J. 85, 2055 (2003).

    Article  ADS  Google Scholar 

  23. A. Spaar and V. Helms, J. Non-Cryst. Solids 352 (42), 4437 (2006).

    Article  ADS  Google Scholar 

  24. A. Spaar, C. Dammer, R. R. Gabdoulline, et al., Biophys. J. 90, 1913 (2006).

    Article  ADS  Google Scholar 

  25. G. Schreiber, in Computational Protein–Protein Interactions, Ed. by R. Nussinov and G. Schreiber (CRC, Boca Raton, 2009), pp. 87–108.

  26. C. H. Chang, P. W. King, M. L. Ghirardi, and K. Kim, Biophys. J. 93 (9), 3034 (2007).

    Article  ADS  Google Scholar 

  27. H. Long, C. H. Chang, P. W. King, et al., Biophys. J. 95 (8), 37 (2008).

    Article  Google Scholar 

  28. O. S. Knyazeva, I. B. Kovalenko, A. M. Abaturova, et al., Biophysics 55 (2), 221 (2010).

    Article  Google Scholar 

  29. J. K. Hurley, J. T. Hazzard, M. Martinez-Julvez, et al., Protein Sci. 8, 1614 (1999).

    Article  Google Scholar 

  30. M. Martinez-Julvez, J. Hermoso, J. K. Hurley, et al., Biochemistry 37, 17680 (1998).

    Article  Google Scholar 

  31. S. Kousorov, M. Siebert, and M. L. Ghirardi, Plant Cell Physiol. 44, 146 (2003).

    Article  Google Scholar 

  32. J. M. Berg, J. L. Tymozcko, and L. Stryer, Biochemistry (Freeman, New York, 2007).

    Google Scholar 

  33. M. W. W. Adams and L. E. Mortenson, J. Biol. Chem. 259 (11), 7045 (1984).

    Google Scholar 

  34. T. Happe and J. D. Naber, Eur. J. Biochem. 214, 475 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Diakonova.

Additional information

Original Russian Text © A.N. Diakonova, S.S. Khruschev, I.B. Kovalenko, G.Yu. Riznichenko, A.B. Rubin, 2016, published in Biofizika, 2016, Vol. 61, No. 4, pp. 677–685.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diakonova, A.N., Khruschev, S.S., Kovalenko, I.B. et al. The role of electrostatic interactions in the formation of ferredoxin–ferredoxin NADP+ reductase and ferredoxin–hydrogenase complexes. BIOPHYSICS 61, 572–579 (2016). https://doi.org/10.1134/S0006350916040060

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350916040060

Keywords

Navigation