Skip to main content
Log in

An analysis of the chlorophyll fluorescence transient by spectral multi-exponential approximation

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

A method to analyze the chlorophyll fluorescence transient was developed using approximation of the experimental signal by a multi-exponential series. Visualization of partial sums of the series made it possible to find the amplitudes and characteristic times for individual phases of the fluorescence induction curve. The method gave more rigid criteria of phase identification as compared with the current semi-empirical approach. Applied to the Chlamidomonas reinhardtii sulfur deprivation case, the method was efficient in finding visually indistinguishable phases of the fluorescence transient, thus allowing early detection of stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Volgusheva, G. P. Kukarskikh, T. K. Antal, et al., Biophysics (Moscow) 53 (5), 378 (2008).

    Article  Google Scholar 

  2. A. Stirbet and Govindjee, Photosynth. Res. 113 (1–3), 15 (2012).

    Article  Google Scholar 

  3. A. Stirbet, G. Yu. Riznichenko, A. B. Rubin, et al., Biochemistry (Moscow) 79 (4), 379 (2014).

    Google Scholar 

  4. G. C. Papageorgiou, M. Tsimilli-Michael, and K. Stamatakis, Photosynth. Res. 94 (2–3), 275 (2007).

    Article  Google Scholar 

  5. W. Vredenberg and O. Prasil, Photosynth. Res. 117 (1–3), 321 (2013).

    Article  Google Scholar 

  6. D. Lazár, J. Plant Physiol. 175C, 131 (2015).

  7. L. N. M. Duysens and H. E. Sweers, in Studies on Microalgae and Photosynthetic Bacteria, (Univ. of Tokyo Press, Tokyo, Japan, 1963), pp. 353–372.

    Google Scholar 

  8. S. Silvestre, S. de Sousa Araujo, M. C. Vaz Patto, et al., J. Integr. Plant Biol. 56 (7), 610 (2014).

    Article  Google Scholar 

  9. T. G. Downing, R. R. Phelan, and S. Downing, J. Arid Environ. 112, 147 (2015).

    Article  Google Scholar 

  10. Y. Z. Zong, W. F. Wang, Q. W. Xue, et al., Photosynthetica 52 (1), 63 (2014).

    Article  Google Scholar 

  11. L. Lei, L. Xiang-yi, X. Xin-wen, et al., Plant Physiol. Biochem. 74, 239 (2014.)

  12. M. Brestic, M. Zivcak, K. Olsovska, et al., Plant Physiol. Biochem. 81, 74 (2014).

    Article  Google Scholar 

  13. M. Zivcak, M. Brestic, H. M. Kalaji, et al., Photosynth. Res. 119 (3), 339 (2014).

    Article  Google Scholar 

  14. M. Darwish, F. Lopez-Lauri, M. El Maataoui, et al., J. Photochem. Photobiol. B 134, 49 (2014).

    Article  Google Scholar 

  15. P. Malaspina, P. Giordani, M. Faimali, et al., Ecol. Indic. 43, 126 (2014).

    Article  Google Scholar 

  16. B. J. Strasser and R. J. Strasser, in Photosynthesis: From Light to Biosphere. Proc. 10th Int. Photosynthesis Congress, Ed. by P. Mathis (Montpellier, France, 1995), Vol. 5, pp. 977–980.

    Google Scholar 

  17. R. J. Strasser, M. Tsimilli-Michael, and A. Srivastava, in Chlorophyll a Fluorescence: A Signature of Photosynthesis, Ed. by G. C. Papageorgiou and Govindjee (Springer, 2004), pp. 321–362.

  18. S. Boisvert, D. Joly, and R. Carpentier, FEBS J. 273 (20), 4770 (2006).

    Article  Google Scholar 

  19. P. Pospisil and H. Dau, Photosynth. Res. 65 (1), 41 (2000).

    Article  Google Scholar 

  20. T. Antal and A. Rubin, Photosynth. Res. 96 (3), 217 (2008).

    Article  Google Scholar 

  21. R. J. Strasser and A. D. Stirbet, Math. Comp. Simulat. 56, 451 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  22. D. Lazár, J. Theor. Biol. 220 (4), 469 (2003).

    Article  Google Scholar 

  23. X.-G. Zhu, Govindjee, N. R. Baker, et al., Planta 223 (1), 114 (2005).

    Article  Google Scholar 

  24. N. E. Belyaeva, F.-J. Schmitt, R. Steffen, et al., Photosynth. Res. 98 (1–3), 105 (2008).

    Article  Google Scholar 

  25. N. E. Belyaeva, F.-J. Schmitt, V. Z. Paschenko, et al., Biosystems. 103 (2), 188 (2011).

    Article  Google Scholar 

  26. T. Yu. Plyusnina, E. N. Voronova, V. N. Gol’tsev, et al., Komp’yut. Issled. Model. 4 (4), 943 (2012).

    Google Scholar 

  27. T. Yu. Plyusnina, G. Yu. Riznichenko, and A. B. Rubin, Russ. J. Plant Physiol. 60 (4), 518 (2013).

    Article  Google Scholar 

  28. S. S. Khrushchev, T. Yu. Plyusnina, and G. Yu. Riznichenko, Mathematical Biology and Bioinformatics: V Int. Conf., Ed. by V.D. Lakhno (Pushcnino, 2-14), pp. 59–60.

  29. A. Srivastava, B. Guisse, H. Greppin, et al., Biochim. Biophys. Acta: Bioenerg. 1320 (1), 95 (1997).

    Article  Google Scholar 

  30. B. Guisse, A. Srivastava, and R. J. Strasser, Arch. Sci. Geneve (1995).

    Google Scholar 

  31. D. Lazár and P. Pospisil, Eur. Biophys. J. 28 (6), 468 (1999).

    Article  Google Scholar 

  32. S. Mathur, P. Mehta, and A. Jajoo, Physiol. Mol. Biol. Plants 19 (2), 179 (2013).

    Article  Google Scholar 

  33. T. Antal, T. Krendeleva, and A. Rubin, Photosynth. Res. 94 (1), 13 (2007).

    Article  Google Scholar 

  34. T. Antal, A. Kolacheva, A. Maslakov, et al., Photosynth. Res. 114 (3), 143 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Yu. Plyusnina.

Additional information

Original Russian Text © T.Yu. Plyusnina, S.S. Khruschev, G.Yu. Riznichenko, A.B. Rubin, 2015, published in Biofizika, 2015, Vol. 60, No. 3, pp. 487–495.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plyusnina, T.Y., Khruschev, S.S., Riznichenko, G.Y. et al. An analysis of the chlorophyll fluorescence transient by spectral multi-exponential approximation. BIOPHYSICS 60, 392–399 (2015). https://doi.org/10.1134/S000635091503015X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000635091503015X

Keywords

Navigation