Skip to main content
Log in

The molecular dynamics of N- and C-terminal interactions during autoinhibition and activation of formin mDial

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Steered molecular dynamics (SMD) was used to identify the interacting amino-acid residues on the surfaces of formin mDia1 domains for DID–DAD interactions, which is responsible for formin autoinhibition, and DID–Rho GTPase, which is responsible for formin activation. Ionic interactions between Glu178 and Arg248 and hydrophobic interactions between a carbon atom of Thr175 and the aromatic ring of Phe247 were the most stable. The DID–Rho interaction was the strongest, being mediated by triple ionic interactions of positively charged Rho residues with a DID amino-acid triplet, which included two negatively charged residues with an uncharged one between them. The DID sites binding with Rho and DAD overlap in part, but different DID amino-acid residues are involved in DID interactions with different partners. Conformational changes potentially arising in the formin domains upon activation or inactivation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Rho:

Rho GTPase

MD:

molecular dynamics

SMD:

steered molecular dynamics

References

  1. Yu. N. Vasil’ev, Soros. Obraz. Zh. 2, 36 (1996).

    Google Scholar 

  2. S. H. Lee and R. Dominguez, Mol. Cells 29, 311 (2010).

    Article  Google Scholar 

  3. S. Maiti, A. Michelot, C. Gould, et al., Cytoskeleton (Hoboken) 69, 393 (2012).

    Article  Google Scholar 

  4. T. Otomo, D. R. Tomchick, C. Otomo, et al., PLOS ONE 5 (9), el2896 (2010).

    Article  Google Scholar 

  5. A. G. Nezami, Poy F., and M. J. Eck, Structure 14, 257 (2006).

    Article  Google Scholar 

  6. J. B. Moseley, I. Sagot, A. L. Manning, et al., Mol. Biol. Cell 15, 896 (2004).

    Article  Google Scholar 

  7. M. Lammers, R. Rose, A. Scrima, and A. Wittinghofer, EMBO J. 24, 4176 (2005).

    Article  Google Scholar 

  8. F. Li and H. N. Higgs, J. Biol. Chem. 280, 6986 (2005).

    Article  Google Scholar 

  9. T. Otomo, D. R. Tomchick, C. Otomo, et al., Nature 433, 488 (2005).

    Article  ADS  Google Scholar 

  10. R. Rose, M. Weyand, M. Lammers, et al., Nature 435, 513 (2005).

    Article  ADS  Google Scholar 

  11. D. Pruyne, M. Evangelista, C. Yang, et al., Science 297, 612 (2002).

    Article  ADS  Google Scholar 

  12. A. Seth, C. Otomo, and M. K. Rosen, J. Cell Biol. 174, 701 (2006).

    Article  Google Scholar 

  13. M. Chesarone, C. J. Gould, J. B. Moseley, and B. L. Goode, Dev. Cell 16, 292 (2009).

    Article  Google Scholar 

  14. S. B. Padrick and M. K. Rosen, Annu. Rev. Biochem. 79, 707 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Sokolova.

Additional information

Original Russian Text © I.A. Orshanskiy, A.V. Popinako, A.D. Koromyslova, O.I. Volokh, K.V. Shaitan, O.S Sokolov, 2015, published in Biofizika, 2015, Vol. 60, No. 3, pp. 451–456.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orshanskiy, I.A., Popinako, A.V., Koromyslova, A.D. et al. The molecular dynamics of N- and C-terminal interactions during autoinhibition and activation of formin mDial. BIOPHYSICS 60, 361–364 (2015). https://doi.org/10.1134/S0006350915030136

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350915030136

Keywords

Navigation