Skip to main content
Log in

Kinetic model of changes in genetic controlling systems in cells into a state of proliferation and differentiation

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

A kinetic model of changes in genetic controlling systems in cells into a state of proliferation and differentiation was built. A mathematical description of that model in a form of differential equations systems was made. Solutions of those systems were presented graphically. It was shown that at minimum values of reaction rate constants linear time changes were observed in kinetic model parameters and at maximum levels they were non-linear that was characteristic of the living systems. These results point to the fact that changes in genetic controlling systems in living cells occur when reaction rate constants are maximum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Coila, Cell differentiation and proliferation biology, Biology 32, 241 (2009).

    Google Scholar 

  2. T. Ravasi, Nature Genetics 41, 553 (2009).

    Article  Google Scholar 

  3. K. Zavitz and L. Zipursky, Curr. Opin. Cell Biol. 9, 773 (1997).

    Article  Google Scholar 

  4. L. Ho, J. Ronan, and J. Wu, Proc. Natl. Acad. Sci. 106, 5181 (2009).

    Article  ADS  Google Scholar 

  5. L. J. Stein, J. B. Lian, and J. S. Stein, Int. J. Obes. Relat. Metab. Disor. 3, 84 (1996).

    Google Scholar 

  6. R. E. Allen, S. M. Sheehan, and R. G. Taylor, J. Cell. Physiol. 165(2), 307 (1995).

    Article  Google Scholar 

  7. T. Floss, H. H. Arnold, and T. Braun, Genes Dev. 11, 2040 (1997).

    Article  Google Scholar 

  8. S. Kastner, M. C. Elias, and A. J. Rivera, J. Histochem. Cytochem. 48(8), 1079 (2000).

    Article  Google Scholar 

  9. M. H. Lee, A. Javed, and H. J. Kim, J. Cell Biochem. 73, 114 (1999).

    Article  Google Scholar 

  10. P. Minoo, W. Sullivan, and L. Solomon, J. Cell Biol. 109(5), 1937 (1989).

    Article  Google Scholar 

  11. P. Seale, L. A. Sabourin, and A. Girgis-Gabardo, Cell 102(6), 777 (2000).

    Article  Google Scholar 

  12. S. M. Sheehan and R. E. Allen, J. Cell Physiol. 181(3), 499 (1999).

    Article  Google Scholar 

  13. R. Tatsumi, J. E. Anderson, and C. J. Nevoret, Dev. Biol. 194(1), 114 (1998).

    Article  Google Scholar 

  14. R. Tatsumi, A. Hattori, and Y. Ikeuchi, Mol. Biol. Cell 13(8), 2909 (2002).

    Article  Google Scholar 

  15. Z. Yablonka-Reuveni, R. Seger, and A. J. Rivera, J. Histochem. Cytochem. 47(1), 23 (1999).

    Article  Google Scholar 

  16. E. Canalis, A. N. Economides, and E. Gazzero, Endocrinology Rev. 24(2), 218 (2003).

    Article  Google Scholar 

  17. E. M. Füchtbauer and H. Westphal, Developmental Dynamics: An Official Publication of the American Association of Anatomists 193, 34 (1992).

    Article  Google Scholar 

  18. M. D. Grounds, K. L. Garrett, and M. C. Lai, Cell and Tissue Res. 267(1), 99 (1992).

    Article  Google Scholar 

  19. Z. Yablonka-Reuveni and A. J. Rivera, Dev. Biol. 164(2) 588 (1994).

    Article  Google Scholar 

  20. P. S. Zammit, J. P. Golding, and Y. Nagata, J. Cell Biol. 166(3) 347 (2004).

    Article  Google Scholar 

  21. X. Kai, D. Dong, and Z. Shanshan, PloS Comput. Biol. 4, 124 (2006).

    Article  Google Scholar 

  22. X. Zhao, Z. Yang, G. Liang, et al., Anesthesiology 118(3), 537 (2013).

    Article  Google Scholar 

  23. R. Binggeli and R. C. Weinstein, J. Theor. Biol. 123, 377 (1986).

    Article  Google Scholar 

  24. L. K. Putney, J. Biol. Chem. 278, 44645 (2003).

    Article  Google Scholar 

  25. Y. Kim, X. Zheng, and Y. Zheng, Cell Res. 55, 213 (2013).

    Google Scholar 

  26. C. D. Cone, J. Theoret. Biol. 30, 151 (1971).

    Article  Google Scholar 

  27. S. Sundelacruz, M. Levin, and D. Kaplan, Stem Cell Review and Reproduction 5, 231 (2009).

    Article  Google Scholar 

  28. S. Sundelacruz, M. Levin, and D. Kaplan, PLoS ONE 3(11), 325 (2008).

    Article  Google Scholar 

  29. A. A. Samarskii, Introduction to Numerical Methods (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  30. V. P. D’yakonov, MATLAB and SIMULINK for Radio Engineers (DMK-Press, Moscow, 2011) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Stadnyk.

Additional information

Original Russian Text © I.V. Stadnyk, D.I. Sanagursky, 2014, published in Biofizika, 2014, Vol. 59, No. 4, pp. 732–739.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stadnyk, I.V., Sanagursky, D.I. Kinetic model of changes in genetic controlling systems in cells into a state of proliferation and differentiation. BIOPHYSICS 59, 601–607 (2014). https://doi.org/10.1134/S0006350914040071

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350914040071

Keywords

Navigation