Skip to main content
Log in

Travelling Waves of Cell Differentiation

  • Regular Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

The paper is devoted to modelling of cell differentiation in an initially homogeneous cell population. The mechanism which provides coexistence of two cell lineages in the initially homogeneous cell population is suggested. If cell differentiation is initiated locally in space in the population of undifferentiated cells, it can propagate as a travelling wave converting undifferentiated cells into differentiated ones. We suggest a model of this process which takes into account intracellular regulation, extracellular regulation and different cell types. They include undifferentiated cells and two types of differentiated cells. When a cell differentiates, its choice between two types of differentiated cells is determined by the concentrations of intracellular proteins. Differentiated cells can either stimulate differentiation into their own cell lineage or into another cell lineage. In the case of the positive feedback, only one lineage of differentiated cells will finally appear. In the case of negative feedback, both of them can coexist. In this case a periodic spatial pattern emerges behind the wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson ARA, Chaplain M, Rejniak KA (2007) Single cell based models in biology and medicine. Birkhäuser, Basel

    Book  Google Scholar 

  • Bernard S (2013) Modélisation multi-échelles en biologie. In: Le vivant discret et continu. N. Glade, A. Stephanou, Editeurs, Editions Materiologiques, pp 65-89

  • Bessonov N, Crauste F, Demin I, Volpert V (2009) Dynamics of erythroid progenitors and erythroleukemia. Math Model Nat Phenom 4(3):210–232

    Article  Google Scholar 

  • Bessonov N, Crauste F, Fischer S, Kurbatova P, Volpert V (2011) Application of hybrid models to blood cell production in the bone marrow. Math Model Nat Phenom 6(7):2–12

    Article  Google Scholar 

  • Bessonov N, Kurbatova P, Volpert V (2012) Pattern formation in hybrid models of cell populations. In: Capasso V, Gromov M, Harel-Bellan A, Morozova N, Pritchard L (eds) Pattern formation in morphogenesis. Springer, Berlin, pp 107–119

    Google Scholar 

  • Bessonov N, Eymard N, Kurbatova P, Volpert V (2012) Mathematical modeling of erythropoiesis in vivo with multiple erythroblastic islands. Appl Math Lett 25:1217–1221

    Article  Google Scholar 

  • Bessonov N, Kurbatova P, Volpert V (2010) Particle dynamics modelling of cell populations. In: Proceedings of Conferences on JANO Mohhamadia. Math Model Nat Phenom 5(7):42–47

  • Crauste F, Demin I, Gandrillon O, Volpert V (2010) Mathematical study of feedback control roles and relevance in stress erythropoiesis. J Theor Biol 263:303–316

    Article  Google Scholar 

  • Cristini V, Lowengrub J (2010) Multiscale modeling of cancer: an integrated experimental and mathematical modeling approach. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Demin I, Crauste F, Gandrillon O, Volpert V (2010) A multi-scale model of erythropoiesis. J Biol Dyn 4:59–70

    Article  Google Scholar 

  • Deutsch A, Dormann S (2005) Cellular automaton modeling of biological pattern formation. Birkhäuser, Boston

    Google Scholar 

  • El Khatib N, Genieys S, Volpert V (2007) Atherosclerosis initiation modeled as an inflammatory process. Math Model Nat Phenom 2(2):126–141

    Article  Google Scholar 

  • El Khatib N, Genieys S, Kazmierczak B, Volpert V (2009) Mathematical modelling of atherosclerosis as an inflammatory disease Phil. Trans R Soc A 367:4877–4886

    Article  Google Scholar 

  • El Khatib N, Genieys S, Kazmierczak B, Volpert V (2012) Reaction-diffusion model of atherosclerosis development. J Math Biol 65(2):349–374

    Article  Google Scholar 

  • Eymard N, Bessonov N, Gandrillon O, Koury MJ, Volpert V (2014) The role of spatial organisation of cells in erythropoiesis. J Math Biol in press

  • Fischer S, Kurbatova P, Bessonov N, Gandrillon O, Volpert V, Crauste F (2012) Modelling erythroblastic islands : using a hybrid model to assess the function of central macrophage. J Theor Biol 298:92–106

    Article  Google Scholar 

  • Glade N, Stephanou A, Editeurs (2013) Le vivant discret et continu. Editions Materiologiques

  • Karttunen M, Vattulainen I, Lukkarinen A (2004) A novel methods in soft matter simulations. Springer, Berlin

    Book  Google Scholar 

  • Kurbatova P, Bernard S, Bessonov N, Crauste N, Demin I, Dumontet C, Fischer S, Volpert V (2011) Hybrid model of erythropoiesis and leukemia treatment with cytosine arabinoside. SIAM J Appl Math 71(6):2246–2268

    Article  Google Scholar 

  • Kurbatova P, Panasenko G, Volpert V (2012) Asymptotic numerical analysis of the diffusion-discrete absorption equation. Math Methods Appl Sci 35(4):438–444

    Article  Google Scholar 

  • Kurbatova P, Eymard N, Volpert V (2013) Hybrid model of erythropoiesis. Acta Biotheor 61(3):305–315

    Article  Google Scholar 

  • Osborne JM, Walter A, Kershaw SK, Mirams GR, Fletcher AG, Pathmanathan P, Gavaghan D, Jensen OE, Maini PK, Byrne HM (2010) A hybrid approach to multi-scale modelling of cancer. Phil Trans R Soc A 368:5013–5028

    Article  Google Scholar 

  • Patel AA, Gawlinsky ET, Lemieux SK, Gatenby RA (2001) A cellular automaton model of early tumor growth and invasion: the effects of native tissue vascularity and increased anaerobic tumor metabolism. J Theor Biol 213:315–331

    Article  Google Scholar 

  • Satoh A (2011) Introduction to practice of molecular simulation. Elsevier, Amsterdam

    Google Scholar 

  • Trewenack AJ, Landman KA (2009) A traveling wave model for invasion by precursor and differentiated cells. Bull Math Biol 71:291–317

    Article  Google Scholar 

  • Trofimov SY (2003) Thermodynamic consistency in dissipative particle dynamics. Eindhoven University Press, Eindhoven

    Google Scholar 

  • Volpert V (2014) Elliptic partial differential equations, vol 2. Reaction-diffusion equations, Birkhäuser

    Book  Google Scholar 

  • Volpert V, Bessonov N, Eymard N, Tosenberger A (2013) Modèle multi-échelle de la dynamique cellulaire. In: Le vivant discret et continu. N. Glade, A. Stephanou, Editeurs, Editions Materiologiques, pp 91–111

  • Volpert A, Volpert Vit, Volpert Vl (1994) Traveling wave solutions of parabolic systems. Translation of mathematical monographs, vol 140, Am Math Soc, Providence

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Volpert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benmir, M., Bessonov, N., Boujena, S. et al. Travelling Waves of Cell Differentiation. Acta Biotheor 63, 381–395 (2015). https://doi.org/10.1007/s10441-015-9264-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-015-9264-x

Keywords

Mathematics Subject Classification

Navigation