Skip to main content
Log in

Nanocrystalline ceria based materials—Perspectives for biomedical application

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Nanocrystalline ceria possesses a unique complex of physical and chemical properties making it highly bioactive material. In this review, modern data on the action of nanocrystalline ceria on cells, micro- and macroorganisms are analyzed. Special attention is paid to the analysis of the factors affecting protective properties of CeO2 with respect to the living systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. K. Ivanov, A. B. Shcherbakov, and A. V. Usatenko, Usp. Khimii 78(9), 924 (2009).

    Google Scholar 

  2. A. E. Baranchikov, O. S. Polezhaeva, V. K. Ivanov, and Yu. D. Tretyakov, CrystEngComm 12(11), 3531 (2010).

    Article  Google Scholar 

  3. S. Tsunekawa, T. Fukuda, and A. Kasuya, Surf. Sci. 457, L437 (2000).

    Article  Google Scholar 

  4. S. Turner, S. Lazar, B. Freitag, et al., Nanoscale 3, 3385 (2011).

    Article  ADS  Google Scholar 

  5. L. J. Wu, H. J. Wiesmann, A. R. Moodenbaugh, et al., Phys. Rev. B 69, 125415-1 (2004).

    ADS  Google Scholar 

  6. J. Zhang, T. Naka, S. Ohara, et al., Phys. Rev. B 84, 045411 (2011).

    Article  ADS  Google Scholar 

  7. O. S. Polezhaeva, V. K. Ivanov, A. B. Shcherbakov, et al., Abstracts of Conf. Internat. Particip. «Nanotechnologies in Oncology», Moscow, October 09–10, 2009.

  8. V. K. Ivanov, A. B. Shcherbakov, N. M. Zholobak, and O. S. Ivanova, Priroda 3, 47 (2011).

    Google Scholar 

  9. T. Pirmohamed, J. M. Dowding, S. Singh, et al., Chem. Commun. (Camb) 46(16), 2736 (2010).

    Article  Google Scholar 

  10. J. M. Perez, A. Asati, S. Nath, and A. Kaittanis, Small 4, 552 (2008).

    Article  Google Scholar 

  11. A. Asati, S. Santra, C. Kaittanis, et al., Chem. Int. 48, 2308 (2009).

    Article  Google Scholar 

  12. C. Korsvik, S. Patil, S. Seal, and W. T. Self, Chem Commun (Camb) 14(10), 1056 (2007).

    Article  Google Scholar 

  13. E. G. Heckert, A. S. Karakoti, S. Seal, and W. T. Self, Biomaterials 29(18), 2705 (2008).

    Article  Google Scholar 

  14. A. S. Karakoti, S. Singh, A. Kumar, et al., J. Am. Chem. Soc. 131(40), 14144 (2009).

    Article  Google Scholar 

  15. A. B. Shcherbakov, V. K. Ivanov, T. V. Sirota, and Yu. D. Tretyakov, Dokl. RAN 437(2), 197 (2011).

    Google Scholar 

  16. A. S. Karakoti, N. A. Monteiro-Riviere, R. Aggarwal, et al., J. Minerals, Metals and Materials Society 60(3), 33 (2008).

    Article  Google Scholar 

  17. S. Babu, A. Velez, K. Wozniak, et al., Chem. Phys. Lett. 442, 405 (2007).

    Article  ADS  Google Scholar 

  18. V. K. Ivanov, A. B. Shcherbakov, I. G. Ryabokon’, et al., Dokl. RAN 430(5), 639 (2010).

    Google Scholar 

  19. L. D. Falcao, A. P. Falcao, and E. F. Gris, Braz. J. Food Technol. 11(1), 63 (2008).

    Google Scholar 

  20. V. K. Ivanov, A. V. Usatenko, and A. B. Shcherbakov, Zh. Neorgan. Khimii 54(10), 1596 (2009).

    Google Scholar 

  21. H. F. Poon, V. Calabrese, G. Scapagnini, and D. A. Butterfield, Clin. Geriatr. Med. 20, 329 (2004).

    Article  Google Scholar 

  22. V. M. Darley-Usmar, V. J. O’Leary, and M. T. Wilson, Free Radical Res. Commun. 16(1), 13.1 (1992).

    Google Scholar 

  23. J. S. Beckman, H. Ischiropoulos, L. Zhu, et al., Free Radical Res. Commun. 16(1), 13.4 (1992).

    Google Scholar 

  24. J. S. Beckman, T. W. Beckman, J. Chen, et al., Proc. Natl. Acad. Sci. USA 87, 1620 (1990).

    Article  ADS  Google Scholar 

  25. P. Evans and B. Halliwell, Ann. N. Y. Acad. Sci. 884, 19 (1999).

    Article  ADS  Google Scholar 

  26. D. Harman, Radiat. Res. 16, 753 (1962).

    Article  Google Scholar 

  27. D. Harman, J. Gerontol. 11(3), 298 (1956).

    Google Scholar 

  28. D. Schubert, R. Dargusch, et al., Biochem. Biophys. Res. Commun. 342(1), 86 (2006).

    Article  Google Scholar 

  29. L. K. Limbach, Y. Li, R. N. Grass, et al., Environ. Sci. Technol. 39, 9370 (2005).

    Article  Google Scholar 

  30. M. Fall, M. Guerbet, B. Park, et al., Nanotoxicology 1, 227 (2007).

    Article  Google Scholar 

  31. E. Hyun-Jeong and J. Choi, Toxicology Lett. 187(2), 77 (2009).

    Article  Google Scholar 

  32. E.-J. Park, J. Choi, et al., Toxicology 245(1–2), 90 (2008).

    Article  Google Scholar 

  33. W. Lin, Y. W. Huang, et al., Int. J. Toxicol. 25(6), 451 (2006).

    Article  MathSciNet  Google Scholar 

  34. T. J. Brunner, P. Wick, et al., Environ. Sci. Technol. 40(14), 4374 (2006).

    Article  Google Scholar 

  35. B. Park, P. Martin, et al., Part. Fibre. Toxicol. 4, 12 (2007).

    Article  Google Scholar 

  36. B. Park, K. Donaldson, et al., Inhalation Toxicology 20(6), 547 (2008).

    Article  Google Scholar 

  37. T. Xia, M. Kovochich, et al., ACS Nano 2(10), 2121 (2008).

    Article  Google Scholar 

  38. J. Niu, A. Azfer, et al., Cardiovasc. Res. 73(3), 549 (2007).

    Article  Google Scholar 

  39. W. H. Wu, X. Sun, et al., Biochem. Biophys. Res. Commun. 373(2), 315 (2008).

    Article  Google Scholar 

  40. R. W. Tarnuzzer, J. Colon, et al., Nano Lett. 5(12), 2573 (2005).

    Article  ADS  Google Scholar 

  41. M. Das, S. Patil, et al., Biomaterials 28(10), 1918 (2007).

    Article  Google Scholar 

  42. M. Auffan, J. Rose, T. Orsiere, et al., Nanotoxicology 3(2), 161 (2009).

    Article  Google Scholar 

  43. S.-F. Huanga, Z.-Y. Li, X.-Q. Wanga, et al., Ecotoxicology and Environmental Safety 73(1), 89 (2010).

    Article  Google Scholar 

  44. E. G. Heckert, S. Seal, and W. T. Self, Environ. Sci. Technol. 42(13), 5014 (2008).

    Article  Google Scholar 

  45. W. Yang, T. Wang, H. Lei, and Y. Yang, Wei Sheng Yan Jiu 28(2), 91 (1999).

    Google Scholar 

  46. J. M. Berg, A. Romoser, N. Banerjee, et al., Nanotoxicology 3(4), 276 (2009).

    Article  Google Scholar 

  47. S. Patil, A. Sandberg, E. Heckert, et al., Biomaterials 28(31), 4600 (2007).

    Article  Google Scholar 

  48. W. H. Suh, K. S. Suslick, G. D. Stucky, et al., Progress in Neurobiology 87, 133 (2009).

    Article  Google Scholar 

  49. M. Safi, H. Sarrouj, O. Sandre, et al., Nanotechnology 21(14), 145103 (2010).

    Article  ADS  Google Scholar 

  50. S. S. Hardas, D. A. Butterfield, R. Sultana, et al., Toxicol Sci. 116(2), 562 (2010).

    Article  Google Scholar 

  51. R. A. Yokel, R. L. Florence, J. M. Unrine, et al., Nanotoxicology 3, 234 (2009).

    Article  Google Scholar 

  52. B. K. Pierscionek, Y. Li, A. A. Yasseen, et al., Nanotechnology 21(3), 035102 (2010).

    Article  ADS  Google Scholar 

  53. A. Asati, S. Santra, C. Kaittanis, and J. M. Perez, ACS Nano. 4(9), 5321 (2010).

    Article  Google Scholar 

  54. Y.-W. Zhang, R. Si, C.-S. Liao, and C.-H. Yan, J. Phys. Chem. B 107(37), 10159 (2003).

    Article  Google Scholar 

  55. M. M. Natile, G. Boccaletti, and A. Glisenti, Chem. Mater. 17, 6272 (2005).

    Article  Google Scholar 

  56. N. M. Zholobak, A. B. Shcherbakov, V. K. Ivanov et al., Biol. Sistemy 2(1), 3 (2010).

    Google Scholar 

  57. N. M. Zholobak, Z. M. Olevinskaya, N. Ya. Spivak, et al., Mikrobiol. Zh. 72(3), 42 (2010).

    Google Scholar 

  58. A. S. Karakoti, N. A. Monteiro-Riviere, R. Aggarwal, et al., J. Minerals, Metals and Materials Soc. 60(3), 33 (2008).

    Article  Google Scholar 

  59. Y. T. Tsai, J. Oca-Cossio, K. Agering, et al., Nanomed. 2(3), 325 (2007).

    Article  Google Scholar 

  60. A. S. Karakoti, S. V. N. T. Kuchibhatla, K. S. Babu, and S. Seal, J. Phys. Chem. C 111(46), 17232 (2007).

    Article  Google Scholar 

  61. S. Maensiri, C. Masingboon, P. Laokul, et al., Crystal Growth & Design, 7(5), 950 (2007).

    Article  Google Scholar 

  62. N. Izu, I. Matsubara, T. Itoh, et al., Bull. Chem. Soc. Japan 81(6), 761 (2008).

    Article  Google Scholar 

  63. V. K. Ivanov, O. S. Polezhaeva, A. S. Shaporev, et al., Zh. Neorgan. Khimii 55(3), 368 (2010).

    Google Scholar 

  64. O. S. Ivanova, T. O. Shekunova, V. K. Ivanov, et al., Dokl. RAN 437(5), 638 (2011).

    Google Scholar 

  65. A. Vincent, S. Babu, E. Heckert, et al., ACS Nano 3(5), 1203 (2009).

    Article  Google Scholar 

  66. S. Patil, S. Reshetnikov, M. K. Haldar, et al., J. Phys. Chem. B 111, 8437 (2007).

    Google Scholar 

  67. V. K. Ivanov, O. S. Polezhaeva, A. B. Shcherbakov, et al., Zh. Neorgan. Khimii 55(1), 3 (2010)

    Google Scholar 

  68. C. P. Leamon, A. L. Jackman. C. P. Leamon, and A. L. Jackman, Vitam Horm. 79, 203 (2008).

    Article  Google Scholar 

  69. A. B. Shcherbakov, N. M. Zholobak, V. K. Ivanov et al., Biotekhnologiya 4(1), 9 (2011). 2011.

    Google Scholar 

  70. Yu. A. Gasymova, O. S. Ivanova, A. B. Shcherbakov, et al., Dokl. RAN (2011, in press).

  71. B. A. Rzigalinski, K. Meehan, R. M. Davis, et al., Nanomedicine (Lond) 1(4), 399 (2006).

    Article  Google Scholar 

  72. I. Celardo, M. De Nicola, C. Mandoli, et al., ACS Nano 5(6), 4537 (2011).

    Article  Google Scholar 

  73. N. Singh, E. Amateis, J. E Mahaney, et al., FASEB J. 22, 624.2 (2008).

    Article  Google Scholar 

  74. S. M. Hirst, A. S. Karakoti, R. D. Tyler, et al., Small 5(24), 2848 (2009).

    Article  Google Scholar 

  75. F. S. Archibald and I. Fridovich, J. Bacteriol. 146(3), 928 (1981).

    Google Scholar 

  76. C. Marty-Teysset, F. de la Torre, and J.-R. Garel, Appl Environ Microbiol. 66(1), 262 (2000).

    Article  Google Scholar 

  77. N. M. Zholobak, A. B. Shcherbakov, V. K. Ivanov, et al., in VI-th International conference «Bioresources and Viruses» September 14–17, 2010 (Kyiv, 2010), pp. 39–40.

  78. N. M. Zholobak, A. B. Shcherbakov, V. K. Ivanov, et al, Antiviral Research 90(2), A67 (2011).

    Article  Google Scholar 

  79. N. M. Zholobak, L. D. Krivokhatskaya, A. B. Shcherbakov, et al., Abstracts of Conf. Internat. Particip. «Nanotechnologies in Oncology», Moscow, October 30, 2010 (Moscow, 2010), p. 45.

  80. E. Yu. Krysanov, V. K. Ivanov, T. B. Demidova, and O. S. Ivanova, 6th International Meeting on the Environmental Effects of Nanoparticles and Nanomaterials. The Royal Society, London, Monday 19th–Wednesday 21st September 2011.

  81. J. Chen, S. Patil, S. Seal, and J. F. McGinnis, Nature Nanotechnology 1, 142 (2006).

    Article  ADS  Google Scholar 

  82. G. A. Silva, Nature Nanotechnology 1(2), 92 (2006).

    Article  ADS  Google Scholar 

  83. X. Zhou, L. L. Wong, A. S. Karakoti, et al., PLoS One 6(2), e16733 (2011).

    Article  ADS  Google Scholar 

  84. J. Chen, S. Patil, S. Seal, et al., Adv. Exp. Med. Biol. 53, 9 (2008).

    Google Scholar 

  85. J. F. Mcginnis, J. Chen, L. Wong, et al., United States Patent 20060246152. Publication Date: 11/02/2006.

  86. N. M. Zholobak, V. K. Ivanov, A. B. Shcherbakov, et al., J. Photochem. Photobiol. B 102, 32 (2011).

    Article  Google Scholar 

  87. B. A. Rzigalinski and A. M. Clark, WO/2007/002662 Publication Date: 04.01.2007.

  88. W. M. Sigmund, Yi-yang Tsai, I. Constantinidis, et al., WO/2008/064357 Publication Date: 29.05.2008.

  89. J. Colon, N. Hsieh, A. Ferguson, et al., Nanomedicine 6(5), 698 (2010).

    Article  Google Scholar 

  90. G. T. Wondrak, Antioxidants & Redox Signaling 11(12), 3015 (2009).

    Article  Google Scholar 

  91. J. F. Mcginnis, L. L. Wong, and X. Zhou, United States Patent Application 20090269410 Publication Date: 10/29/2009.

  92. K. Sugaya and S. Seal, United States Patent Application 20080166412 Publication Date: 07/10/2008.

  93. C. Mandoli, F. Pagliari, S. Pagliari, et al., Adv. Funct. Mater. 20, 1617 (2010).

    Article  Google Scholar 

  94. B. A. Rzigalinski, Technology in Cancer Research & Treatment 4, 651 (2005).

    Google Scholar 

  95. H. Zha, Z. Cheng, J. Chen, R. Hu, et al., Biol. Trace Elem Res. 7, 36 (2011).

    Google Scholar 

  96. A. Cohen, J. A. Karfakis, M. D. Kurnick, and B. Rzigalinski, FASEB J. 22, 624.1 (2008).

    Google Scholar 

  97. S. Olgun, B. Rzigalinski, and C. M. Reilly, J. Immunol. 24, 162 (2006).

    Google Scholar 

  98. N. Singh, C. A. Cohen, and B. A. Rzigalinski, Ann. N. Y. Acad. Sci. 1122(1), 219 (2007).

    Article  ADS  Google Scholar 

  99. I. Celardo, J. Z. Pedersen, E. Traversa, and L. Ghibelli, Nanoscale 3, 1411 (2011).

    Article  ADS  Google Scholar 

  100. B. D. Angelo, S. Santucci, E. Benedetti, et al., Current Nanoscience 5(2), 167 (2009).

    Article  Google Scholar 

  101. K. A. Amin, M. S. Hassan, El-S.T. Awad, and K. S. Hashem, Int. J. Nanomedicine 6, 143 (2011).

    Article  Google Scholar 

  102. P. Huang, J. Li, S. Zhang, et al., Environ Toxicol Pharmacol. 31(1), 25 (2011).

    Article  Google Scholar 

  103. J. Niu, K. Wang, and P. E. Kolattukudy, J. Pharmacol. Exp. Ther. 338(1), 53 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Shcherbakov.

Additional information

Original Russian Text © A.B. Shcherbakov, V.K. Ivanov, N.M. Zholobak, O.S. Ivanova, E.Yu. Krysanov, A.E. Baranchikov, N.Ya. Spivak, Yu.D. Tretyakov, 2011, published in Biofizika, 2011, Vol. 56, No. 6, pp. 995–1015.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shcherbakov, A.B., Ivanov, V.K., Zholobak, N.M. et al. Nanocrystalline ceria based materials—Perspectives for biomedical application. BIOPHYSICS 56, 987–1004 (2011). https://doi.org/10.1134/S0006350911060170

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350911060170

Keywords

Navigation