Skip to main content
Log in

The Na+ pump and intracellular signaling mechanisms

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The main properties of Na+/K+-ATPase as a natural receptor for cardiotonic steroids are considered. Primary attention is focused on structural and functional differences between the α-subunit isoforms of Na+/K+-ATPase in different tissues. General information on the role of the Na+ pump in signaling cascades in kidney epithelial cells, cardiomyocytes and neurons is presented. The data obtained indicate that, in neurons, several α-isoforms of Na+/K+-ATPase possessing different sensitivity to ouabain may have different signaling functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Skou, Methods Enzymol. 156, 1 (1988).

    Article  Google Scholar 

  2. A. Schwartz, G. E. Lindenmeyer, and J. C. Allen, Pharm. Rev. 27, 3 (1975).

    Google Scholar 

  3. W. Schoner and G. Scheiner-Bobis, Am. J. Physiol. Cell Physiol. 293, 509 (2007).

    Article  Google Scholar 

  4. W. Schoner, J. Exp. Clin. Endocrinol. Diabetes 108, 449 (2000).

    Article  Google Scholar 

  5. N. Bauer, J. Muller-Ehmsen, U. Kramer, et al., Hypertension 45, 1024 (2005).

    Article  Google Scholar 

  6. A. Mobasheri, J. Avila, I. Biosci. Rep. 20, 51 (2000).

    Article  Google Scholar 

  7. W. H. Huang, Y. Wang, A. Askari, et al., Biochim. Biophys. Acta 1190, 108 (1994).

    Article  Google Scholar 

  8. A. Boldyrev, E. Bulygina, D. Carpenter, and W. Schoner, J. Mol. Neurosci. 21, 213 (2003).

    Article  Google Scholar 

  9. A. Boldyrev, E. Bulygina, M. Yuneva, and W. Schoner, Ann. NY Acad. Sci. 986, 519 (2003).

    Article  ADS  Google Scholar 

  10. D. Charlemagne, Herz 18, 79 (1993).

    Google Scholar 

  11. A. L. Woo, P. E. James, and J. B. Lingrel, J. Membr. Biol. 169, 39 (1999).

    Article  Google Scholar 

  12. M. Dobretsov and J. R. Stimers, Front. Biosci. 10, 2373 (2005).

    Article  Google Scholar 

  13. J. B. Lingrel and T. Kuntzweiler, J. Biol. Chem. 269, 19659 (1994).

    Google Scholar 

  14. G. Blanco, Semin. Nephrol. 25, 292 (2005).

    Article  Google Scholar 

  15. A. P. de Carvalho, K. J. Sweadner, J. T. Penniston, et al., Neuron 43, 169 (2004).

    Article  Google Scholar 

  16. K. R. Vanmolkot, E. E. Kors, J. J. Hottenga, et al., Ann. Neurol. 54, 360 (2003).

    Article  Google Scholar 

  17. J. W. Van Huysse, Pathophysiology 14, 213 (2007).

    Google Scholar 

  18. M. L. Croyle, A. L. Woo, and J. B. Lingrel, Eur. J. Biochem. 248, 488 (1997).

    Article  Google Scholar 

  19. W. Schoner, Eur. J. Biochem. 269, 2440 (2002).

    Article  Google Scholar 

  20. J. Muller-Ehmsen, P. Juvvadi, C. B. Thopmson, et al., Am. J. Physiol. Cell Physiol. 281, 1355 (2001).

    Google Scholar 

  21. G. Crambert, U. Hasler, A. T. Beggah, et al., J. Biol. Chem. 275, 1976 (2000).

    Article  Google Scholar 

  22. G. Blanco and R. W. Mercer, Am. J. Physiol. 275, 633 (1998).

    Google Scholar 

  23. A. G. Therien and R. Blostein, Am. J. Physiol. Cell Physiol. 279, 541 (2000).

    Google Scholar 

  24. O. V. Fedorova, N. A. Dorofeeva, D. A. Lopatin, et al., Hypertension 39, 298 (2002).

    Article  Google Scholar 

  25. J. M. Hamlyn, M. P. Blaustein, S. Bova, et al., Proc. Natl. Acad. Sci. USA 88, 6259 (1991).

    Article  ADS  Google Scholar 

  26. W. R. Mathews, D. W. DuCharme, J. M. Hamlyn, et al., Hypertension 17, 930 (1991).

    Google Scholar 

  27. R. Schneider, V. Wray, M. Nimtz, et al., J. Biol. Chem. 273, 784 (1998).

    Article  Google Scholar 

  28. A. Kawamura, J. Guo, Y. Itagaki, et al., Proc. Natl. Acad. Sci. USA 96, 6654 (1999).

    Article  ADS  Google Scholar 

  29. W. Schoner and G. Scheiner-Bobis, Semin. Nephrol. 25, 343 (2005).

    Article  Google Scholar 

  30. M. Peng, L. Huang, Z. Xie, et al., J. Biol. Chem. 271, 10372 (1996).

    Article  Google Scholar 

  31. J. Liu, J. Tian, M. Haas, et al., J. Biol. Chem. 275, 27838 (2000).

    Google Scholar 

  32. M. Haas, A. Askari, and Z. Xie, J. Biol. Chem. 275, 27832 (2000).

    Google Scholar 

  33. Z. Xie, P. Kometiani, Liu, J. J. Li, et al., J. Biol. Chem. 274, 19323 (1999).

    Article  Google Scholar 

  34. K. Mohammadi, P. Kometiani, Z. Xie, and A. Askari, J. Biol. Chem. 276, 42050 (2001).

    Article  Google Scholar 

  35. Z. Xie and A. Askari, Eur. J. Biochem. 269, 2434 (2002).

    Article  Google Scholar 

  36. O. Aizman, P. Uhlen, M. Lal, et al., Proc. Natl. Acad. Sci. USA 98, 13420 (2001).

    Article  ADS  Google Scholar 

  37. A. Miyakawa-Naito, P. Uhlen, M. Lal, et al., J. Biol. Chem. 278, 50355 (2003).

    Article  Google Scholar 

  38. X. Liu, Z. Spicarova, S. Rydholm, et al., J. Biol. Chem. 283, 11461 (2008).

    Article  Google Scholar 

  39. S. Zhang, S. Malmersjo, J. Li, et al., J. Biol. Chem. 281, 21954 (2006).

    Article  Google Scholar 

  40. M. Liang, T. Cai, J. Tian, et al., J. Biol. Chem. 281, 19709 (2006).

    Article  Google Scholar 

  41. S. V. Pierre and Z. Xie, Cell Bioch. Bioph. 46, 303 (2006).

    Article  Google Scholar 

  42. S. P. Barwe, G. Anilkumar, S. Y. Moon, et al., Mol. Biol. Cell 16, 1082 (2005).

    Article  Google Scholar 

  43. J. Q. Wang, Q. Tang, N. K. Parelkar, et al., Mol. Neurobiol. 29, 1 (2004).

    Article  Google Scholar 

  44. L. Liu, J. Abramowitz, A. Askari, and J. L. Allen, Am. J. Physiol. Heart Circ. Physiol. 287, 2173 (2004).

    Article  Google Scholar 

  45. Z. Yuan, T. Cai, J.. Tian, et al., Mol. Biol. Cell 16, 4034 (2005).

    Article  Google Scholar 

  46. A. V. Chibalin, Jr. Zierath, A. I. Katz, Mol. Biol. Cell 9, 1209 (1998).

    Google Scholar 

  47. A. Aydemir-Koksoy, J. Abramowitz, and J. C. Allen, J. Biol. Chem. 276, 46605 (2001).

    Article  Google Scholar 

  48. C. Brodie, A. Tordai, J. Saloga, et al., J. Cell. Physiol. 165, 246 (1995).

    Article  Google Scholar 

  49. N. Kawazoe, M. Watabe, Y. Masuda, et al., Oncogene 18, 2413 (1999).

    Article  Google Scholar 

  50. M. Akiyama, M. Ogura, M. Iwai, et al., Hum. Cell 12, 205 (1999).

    Google Scholar 

  51. D. J. McConkey, Y. Lin, L. K. Nutt, et al., Cancer Res. 60, 3807 (2000).

    Google Scholar 

  52. A. Y. Xiao, L. Wei, S. Xia, et al., J. Neurosci. 22, 1350 (2002).

    Google Scholar 

  53. A. Kulikov, A. Eva, U. Kirch, et al., Biochim. Biophys. Acta 1768, 1691 (2007).

    Article  Google Scholar 

  54. O. A. Akimova, O. D. Lopina, A. M. Rubtsov, et al., Apoptosis 14, 1266 (2009).

    Article  Google Scholar 

  55. A. A. Boldyrev, Usp. Fisiol. Nauk 34, 21 (2003).

    Google Scholar 

  56. L. V. Karpova, E. E. Akkuratov, E. R. Bulygina, and A. A. Boldyrev, Biol. Membrany 25(2), 131 (2008).

    Google Scholar 

  57. L. V. Karpova, Candidate’s Dissertation (Moscow, 2010).

  58. P. F. James, I. L. Grupp, G. Grupp, et al., J. Mol. Cell 3, 555 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Karpova.

Additional information

Original Russian Text © L.V. Karpova, E.E. Akkuratov, O.M. Brodskaya, A.A. Boldyrev, 2010, published in Biofizika, 2010, Vol. 55, No. 6, pp. 1022–1029.

Translation of the text provided by the authors; redaction imposed solely for comprehensibility.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karpova, L.V., Akkuratov, E.E., Brodskaya, O.M. et al. The Na+ pump and intracellular signaling mechanisms. BIOPHYSICS 55, 937–943 (2010). https://doi.org/10.1134/S0006350910060096

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350910060096

Keywords

Navigation