Skip to main content
Log in

Two molecular motility systems of the frog olfactory cilia

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Intravital video microscopy was used to study the motility of frog (Rana temporaria) olfactory cilia exposed to various odorants—pentanol, camphor, cineole, and vanillin (first group); ammonia and hydrogen sulfide (second group)—and to the cell respiration inhibitors rotenone and malonate. It was demonstrated that the olfactory cilia had both the dynein-tubulin and actin-myosin molecular motility systems, the former providing unordered and the latter, ordered movements. The motility became ordered in response to exposure to odorants. The tested odorants belonging to different groups had different effects on the mitochondrial respiratory chain activity and the motility of olfactory cilia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

NADH:

reduced nicotinamide adenine dinucleotide

References

  1. A. A. Bronshtein, Olfactory Receptors of Vertebrates (Nauka, Leningrad, 1977) [in Russian].

    Google Scholar 

  2. O. Matsuzaki, R. E. Bakin, X. Cai, et al., J. Neurosci. 94(1), 131 (1999).

    Article  Google Scholar 

  3. B. P. M. Menco and A. I. Farbman, Cell Tissue Res. 270, 47 (1992).

    Article  Google Scholar 

  4. S. Frings, S. Benz, and B. Lindemann, J. Gen. Physiol. 97(4), 725 (1991).

    Article  Google Scholar 

  5. Ya. N. Rudenko, E. V. Bigdai, and V. O. Samoilov, Nauchno-Tekhnicheskie Vedomosti SPbGPU, No. 2, 90 (2007).

  6. Ya. N. Rudenko, E. V. Bigdai, and V. O. Samoilov, Biofizika 52(1), 88 (2007).

    Google Scholar 

  7. R. G. Mair, J. Physiol. 326, 341 (1982).

    Google Scholar 

  8. M. Salathe, Annu. Rev. Physiol. 69(1), 401 (2007).

    Article  Google Scholar 

  9. P. Satir and S. T. Christensen, Annu. Rev. Physiol. 69(1), 377 (2007).

    Article  Google Scholar 

  10. X. Yang, R. H. Dillon, and L. J. Fauci, Bull. Math. Biol. 70(4), 1192 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  11. P. Thevenaz, U. E. Ruttimann, and M. Unser, IEEE Trans. Image Process 7(1), 27 (1998).

    Article  ADS  Google Scholar 

  12. E. V. Bigdai, Ross. Fiziol. Zh. im. I. M. Sechenova 90(6), 790 (2004).

    Google Scholar 

  13. U. Wolfrum, X. Liu, A. Schmitt, et al., Cell Motil. Cytoskeleton 40(3), 261 (1998).

    Article  Google Scholar 

  14. I. Sahly, A. El-Amaraoui, M. Abitol, et al., Anat. Embryol. (Berl.) 196(2), 159 (1997).

    Article  Google Scholar 

  15. L. D. Luk’yanova, B. S. Balmukhanova, and A. T. Ugolev, Oxygen-Dependent Processes in the Cell and Its Functional State (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  16. G. Cecchini, Annu. Rev. Biochem. 72, 77 (2003).

    Article  Google Scholar 

  17. B. E. Schultz and S. I. Chan, Annu. Rev. Biophys. Biomol. Struct. 30, 23 (2001).

    Article  Google Scholar 

  18. E. V. Bigdai, V. O. Samoilov, Ya. N. Rudenko, and A. N. Komarov, Vestn. Ross. Voenno-Meditsinskoi Akademii 11(1), 29 (2004).

    Google Scholar 

  19. R. S. Balaban and J. J. Blum, Am. J. Physiol. 242, C172 (1982).

    Google Scholar 

  20. G. Hajnoczky, L. D. Robb-Gaspers, M. B. Seitz, and A. P. Thomas, Cell 82, 415 (1995).

    Article  Google Scholar 

  21. J. G. McCormack, A. P. Halestrap, and R. M. Denton, Physiol. Rev. 70, 391 (1990).

    Google Scholar 

  22. B. J. Nichols, M. Rigoulet, and R. M. Denton, Biochem. J. 303, 461 (1994).

    Google Scholar 

  23. L. D. Robb-Gaspers, P. Burnett, G. A. Rutter, et al., EMBO J. 17, 4987 (1998).

    Article  Google Scholar 

  24. G. A. Rutter, P. Burnett, R. Rizzuto, et al., Proc. Natl. Acad. Sci. USA 93,5489 (1996).

    Article  ADS  Google Scholar 

  25. J. C. Szebr and R. F. Butterworth, Prog. Neurobiol. 39(2), 135 (1992).

    Article  Google Scholar 

  26. E. A. Kosenko, I. G. Stavrovsky, N. I. Venediktova, and Yu. G. Kaminsky, in Proceedings of the All-Russia Workshop on Mitochondria in Pathology (Pushchino, Russia, 2001), pp. 99–101.

    Google Scholar 

  27. V. Felipo, E. A. Kosenko, N. I. Venediktova, and Yu. G. Kaminsky, in Proceedings of the All-Russia Workshop on Mitochondria in Pathology (Pushchino, Russia, 2001), pp. 150–152.

    Google Scholar 

  28. N. I. Venediktova, E. Kosenko, Y. Kaminsky, et al., Mitochondrion 539(5), 263 (2006).

    Google Scholar 

  29. D. M. Mederos and D. Jennings, J. Bioenerg. Biomembr. 34(5), 389 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. O. Samoilov.

Additional information

Original Russian Text © V.O. Samoilov, E.V. Bigdai, Ya.N. Rudenko, V.V. Bekusova, B.A. Dudich, 2008, published in Biofizika, 2008, Vol. 53, No. 6, pp. 993–999.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samoilov, V.O., Bigdai, E.V., Rudenko, Y.N. et al. Two molecular motility systems of the frog olfactory cilia. BIOPHYSICS 53, 539–543 (2008). https://doi.org/10.1134/S0006350908060134

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350908060134

Key words

Navigation