Skip to main content
Log in

Mechanisms of electromechanical and electrochemical coupling in olfactory cilia of the frog (Rana temporaria)

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The mechanisms of electromechanical and electrochemical coupling in olfactory cilia of the frog (Rana temporaria) have been investigated. High-resolution optical television microscopy of live tissue and pharmacological analysis have been used to reveal the regulation of the motility of olfactory cilia in the absence of odorants; the entry of Ca2+ ions mediated by three types of ion channels (mechanosensitive, cyclic nucleotide gated, and voltage-gated) was shown to determine the motility of cilia. Stimulation of the olfactory adenylate cyclase by movements of the cilia in the absence of odors has been demonstrated and the regulation of cilia motility by membrane potential has been revealed. Membrane potential can affect olfactory acuity and the ability to perceive weak olfactory stimuli in the absence of adequate stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

OC:

olfactory cilia

СNG channels:

cyclic nucleotide-gated ion channels

References

  1. C. Zelano and N. Sobel, Neuron 48 (3), 431 (2005).

    Article  Google Scholar 

  2. S. J. Kleene, Chem. Senses 33, 839 (2008).

    Article  Google Scholar 

  3. B. Lindemann, Biophys. J. 80, 1712 (2001).

    Article  ADS  Google Scholar 

  4. R. Y. K. Pun and S. J. Kleene, Biophys. J. 84, 3425 (2003).

    Article  ADS  Google Scholar 

  5. R. Y. K. Pun and S. J. Kleene, J. Physiol. 559 (2), 535 (2004).

    Article  Google Scholar 

  6. T. Miyamoto, D. Restrepo, and J. H. Teeter, J. Gen. Physiol. 99, 505 (1992).

    Article  Google Scholar 

  7. R. Delgado, M. V. Saavedra, O. Schmachtenberg, et al., J. Neurophysiol. 90, 2022 (2003).

    Article  Google Scholar 

  8. S. Frings, S. Benz, and B. Lindemann, J. Gen. Phsyiol. 97 (4), 725 (1991).

    Article  Google Scholar 

  9. J. S. Kleene, R. C. Gestel, S. H. Bryant, J. Exp. Biol. 195, 307 (1994).

    Google Scholar 

  10. A. Tomaru and T. Kurahashi, J. Neurophysiol. 93, 1880 (2005).

    Article  Google Scholar 

  11. P. Duchamp-Viret, A. Duchamp, and M. A. Chaput, J. Neurosci. 20, 2383 (2000).

    Google Scholar 

  12. A. A. Bronshtein, Olfacory Receptors of Vertebrates (Nauka, Leningrad, 1977) [in Russian].

    Google Scholar 

  13. E. V. Bigdai and V. O. Samoilov, Tsitologiya 54 (9), 666 (2012).

    Google Scholar 

  14. R. C. Challis, H. Tian, W. Yin, et al., PLOS ONE 11 (3), e0150638 (2016). doi doi 10.1371/journal. pone.0150638

    Article  Google Scholar 

  15. P. A. Watson, J. Biol. Chem. 265 (12), 6569 (1990).

    Google Scholar 

  16. A. E. Dubin and V. E. Dionne, J. Gen. Physiol. 103 (2),181(1994).

    Article  Google Scholar 

  17. USSR Ministry of Health, Order No. 755 of August 12, 1977.

  18. J. Reisert, P. J. Bauer, K.-W. Yau, et al., J. Gen. Physiol. 122, 349 (2003).

    Article  Google Scholar 

  19. D. A. Evstigneev, Extended Abstract of Candidate’s Dissertation in Biology (Uluanovsk, 2003).

    Google Scholar 

  20. S. Takahashi, M. Shibata, Y. Fukuuchi, Brain Res. Dev. Brain Res. 104 (1–2), 111 (1997).

    Article  Google Scholar 

  21. K. Meier, W. Knepel, and C. Schfl, Endocrinology 122 (6), 2764 (1988).

    Article  Google Scholar 

  22. K. Hasegawa, Y. Tsukahara, M. Shimamoto, et al., J. Comp. Physiol. A 181, 41 (1997).

    Article  Google Scholar 

  23. A. Darszon, P. Labarka, T. Nishigaki, et al., Physiol. Rev. 79 (2), 481 (1999).

    Google Scholar 

  24. K. Inaba, Cilia 4, 6 (2015).

    Article  Google Scholar 

  25. M. Salathe and R. J. Bookman, J. Cell Sci. 108, 431 (1995).

    Google Scholar 

  26. V. T. Piascik, M. Babich, K. L. Jacobson, et al., Am. J. Physiol. 250 (4), 642 (1986).

    Google Scholar 

  27. J. Derher, M. Delling, and D. E. Clapham, eLife 4, e11066 (2015).

    Google Scholar 

  28. E. E. Davis, M. Brueckner, and N. Katsanis, Dev. Cell 11, 9 (2006).

    Article  Google Scholar 

  29. D. M. F. Cooper, M. J. Schell, P. Thorn, et al., J. Biol. Chem. 273 (42), 27703 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Bigdaj.

Additional information

Original Russian Text © E.V. Bigdaj, D.K. Fufachev, P.R. Petrov, V.O. Samojlov, 2017, published in Biofizika, 2017, Vol. 62, No. 2, pp. 311–318.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bigdaj, E.V., Fufachev, D.K., Petrov, P.R. et al. Mechanisms of electromechanical and electrochemical coupling in olfactory cilia of the frog (Rana temporaria). BIOPHYSICS 62, 240–246 (2017). https://doi.org/10.1134/S0006350917020051

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350917020051

Keywords

Navigation